
AI FOR GENERAL STRATEGY GAME
PLAYING

AI FOR GENERAL STRATEGY
GAME PLAYING

Jon Lau Nielsen
Benjamin Fedder Jensen
Tobias Mahlmann
Julian Togelius
Georgios N. Yannakakis
IT University of Copenhagen

A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

List of Figures vii

List of Tables ix

Acknowledgments xi

AI for General Strategy Game Playing 13

10.1 Introduction 13
10.1.1 Strategy games 13
10.1.2 AI for board games 15
10.1.3 AI for strategy games 16

10.2 Research questions and methodology 18
10.2.1 The SGDL and its framework 19

10.3 The game, the agents and the assigner 21
10.3.1 Implementation details 24

10.4 Agents 24
10.4.1 Random action selection 25
10.4.2 Finite-state machine 26
10.4.3 Neuroevolution of augmenting topologies 26

v

vi CONTENTS

10.4.4 MinMax 28
10.4.5 Monte Carlo Tree Search 29
10.4.6 Potential fields 31
10.4.7 Classifier systems 32

10.5 Results of agent versus agent testing 33
10.6 Results of human play testing 37
10.7 Discussion 40
10.8 Conclusions 42

References 43

LIST OF FIGURES

10.1 A typical screenshot from our example game “RockWars” 20

10.2 The Commander framework used for the agents in the study. 21

10.3 Client-server system used for training and experimentation. 24

10.4 Finite-state automata of the SemiRandom agent units 25

10.5 Finite-state automaton of the FSM agent’s units 26

10.6 Action tree used to find MultiActions 29

10.7 Action tree illustrating the use of buildings. 29

10.8 Summary of agent versus agent results 36

10.9 Summary of human play results 38

vii

LIST OF TABLES

10.1 Unit properties for SGDL models 23

10.2 Agents in the study 25

10.3 Summary of agent versus agent results 34

10.4 Standard deviantions of agent versus agent results 35

10.5 Summary of human play results 38

ix

ACKNOWLEDGMENTS

For more technical details, please refer to the first two authors’ joint masters the-
sis [1], or Tobias Mahlmann’s PhD thesis including the detailed description of the
Strategy Games Description Language [2]. Both of these are available online at
http://game.itu.dk/sgdl. This research was supported in part by the Danish Research
Agency project “AGameComIn” (274-09-0083).

xi

CHAPTER 10

AI FOR GENERAL STRATEGY
GAME PLAYING

10.1 Introduction

Computer strategy games1 — games such as those in the Civilization, StarCraft, Age
of Empires and Total War series, and board game adaptations such as Risk and Axis
and Allies — have been popular since soon after computer games were invented,
and are a popular genre among a wide range of players. Strategy games are closely
related to classic board games such as Chess and Go, but though there has been no
shortage of work on AI for playing classic board games, there has been remarkably
little work on strategy games. This chapter addresses the understudied question of
how to create AI that plays strategy game, through building and comparing AI for
general strategy game playing.

10.1.1 Strategy games

The first documented (non-electronic) strategy games were very abstract, e.g. Chess
or Go, but starting with games published in the 19th century such as Reiswitz’s

1For brevity, we will refer to computer strategy games as strategy games in the following sections.

AI for General Strategy Game Playing.
By Jon Lau Nielsen, Benjamin Fedder Jensen, Tobias Mahlmann, Julian Togelius, and Georgios N.
Yannakakis Copyright c© 2013 John Wiley & Sons, Inc.

13

14 AI FOR GENERAL STRATEGY GAME PLAYING

Kriegsspiel did a trend take its origin which culminated in the games we play today.
Originally designed for military education [3], modelling real-life conflict scenarios
of various kinds, did wargames find their way into home’s as a form of entertainment
(e.g. H. G. Well’s Little Wars). Within the 20th century they underwent several me-
dia transformations, from board- and tabletop-games to computer games, achieving
new levels of realism and detail in the process. At this point we would like to re-
fer the interested reader to a summary of the history of strategy games published by
Sebastian Deterding [4] in 2008.

As far as we know, there is no unequivocal definition of what “strategy game” is.
In the past, arguments have been made to treat (economic) simulation games, e.g.
Sim City, equal to strategy games with a militaristic gameplay, e.g. StarCraft. Two
examples can be seen with both Nohr and Reichert who use the theory of “Govern-
mentality” originally by Foucault to draw similarities between simulation and strat-
egy games [5] [6]. We however explicitly limit ourselves to militaristic games with
optional supporting mechanics that model economic systems. Rather than attempt-
ing a compact definition of strategy games, we would like to enumerate a series of
common characteristics of such game, bearing in mind that particular strategy games
might lack one or several of these characteristics and still be part of the genre:

The base for strategic gameplay is a topographic map that defines relations be-
tween objects and space. Positions on the map can be either given in discrete
(tile-based) or real values.

A player does not incorporate an avatar to interact with the game world. Al-
though some games use a unit/figure to represent the player on the map, does
the camera maintains a distant “bird’s eye” position.

The player interacts with the game world through the game pieces he owns.
Game pieces are often distinguished between units (mobile-) and buildings (im-
mobile objects)

Objects on the map may have properties. Objects are divided into classes that
incorporate the same attributes and abilities.

The interaction between objects is defined implicitly through their actions and
abilities.

The computer per se only acts as a bookkeeper (or gamemaster), making the
mechanics of the game invisible.

The game requires at least two factions. Factions compete over the same or
different goals. Each faction is controlled by a player. The definition of player
here is transparent: it may be another local, network based, or artificial player.

Each faction may have a different view on the game state. While there nec-
essarily exists a well defined canon state of the game at any time, the game
rules define what information is revealed to a player. This feature is often called

INTRODUCTION 15

limited information (while games where every information is available to every
player have full information)

To separate our definition explicitly from other “government games”, such as Sim City,
we further define a separation of game mechanics into primary and secondary me-
chanics:

Primary game mechanics are warfare. All actions that are immediately con-
nected to destroying, hindering, or damaging objects are considered part of this
category.

Secondary game mechanics such as economic or political processes act as sup-
port. Commonly economic mechanics are tailored towards unit production (i.e.
resource gathering), and political processes evolve around diplomacy. Some-
times secondary mechanics can become crucial to the game play and decide
over a win/loss.

A well-established distinction within strategy games is made between turn-based
strategy (TBS) and real-time strategy (RTS) games, where the latter have a much
higher granularity in both time and space, approximating continuous movement and
not requiring moves to be taken every turn.

It could be argued that a well-constructed strategy game is at least as challenging
and demands a similarly rich repertoire of cognitive skills to play well as does a tra-
ditional board game. Many strategy games, where the player has to decide among
multiple available actions for tens of units each turn, have branching factors (number
of possible actions per turn) that dwarf those of even complex board games such as
Go. Some well-constructed strategy games, such as StarCraft, have seen the emer-
gence of new and ever more complex strategies over more than a decade of highly
competitive tournaments. This latter example also points to the large and growing
cultural significance of strategy games. As of August 2012, there are two Korean TV
channels devoted to showing competitive StarCraft matches.

Many strategy games can be played in multiplayer mode, where human players
compete with each other for domination. However, for various reasons (including
the time required to play a typical strategy game) many strategy games are typically
played in single-player mode, against one or several computer-controlled opponents.
Strategy games can also be highly useful for training and education purposes, due to
their capacity for modelling real-life conflict scenarios of various kinds.

10.1.2 AI for board games

There has been extensive research done on AI for traditional board games. In partic-
ular, Chess has figured prominently in AI research from the very start, as it is easy to
formalise and model, and has been thought to require some core human intellectual
capacity in order to play well. Among prominent early attempts to construct chess-
playing AI are Turing’s paper machine [7] and McCarthy’s IBM 7090 [8]. Both of
these used the MinMax algorithm, which builds a search tree of alternating actions

16 AI FOR GENERAL STRATEGY GAME PLAYING

of both players up to a certain depth (ply) and estimates the value of the resulting
board configurations at the nodes of the tree using an evaluation function. This poses
the question of how to construct an accurate evaluation function. An early pioneer
in using machine learning to construct evaluation functions was Samuel, whose self-
learning Checkers player anticipated the concept of temporal difference learning [9].

Advances in both algorithms and computer hardware permitted a program built
on the MinMax idea to win over the human Chess world champion in 1997 [10].
Subsequently, much research on board game AI shifted to considerably harder prob-
lem of playing the Asian board game Go. Go has a much higher branching fac-
tor than Chess, and it is also harder to construct a good board evaluation func-
tion, meaning that MinMax-based approaches have so far performed very poorly
on Go. The current best AI approaches to Go are instead based on Monte Carlo Tree
Search (MCTS), a stochastic technique that does not normally use an evaluation
function [11, 12]. Like MinMax, MCTS builds a search tree each turn, but builds it
incrementally, adding nodes where promising board configurations are found. Board
configurations are evaluated through playing a (large) number of games from the
evaluated configuration to the end of the game, choosing moves randomly. The av-
erage outcome of these playouts is used as the estimated value of the configuration.

10.1.3 AI for strategy games

Regardless of whether the purpose of a strategy game is entertainment, education or
persuasion, single-player strategy games require good artificial intelligence. “Good”
could in this context mean well-playing (that the player is hard for a human to win
over given equal starting positions), believable (takes the sort of actions that a human
player could be expected to take in the same situation), entertaining and/or player-
adaptive (adapts its challenge and playing style to the player so as to optimise player
experience). AI opponents that lack one or several of these properties might strike
the player as artificial, predictable, too easy or too hard and lead to the player ceasing
play prematurely.

Another raison d’être for good strategy game AI is procedural content genera-
tion (PCG), especially search-based PCG. Within search-based PCG, various forms
of game content (such as rules, levels, items, quests and scenarios) are generated
through evolutionary or other stochastic search mechanisms [13]. In strategy games,
this method has previously been applied to evolve balanced maps for StarCraft [14].
An ongoing project of three of the authors of this publication is to generate complete
strategy game rulesets and unit type sets [15, 16]; the Strategy Game Description
Language (SGDL) used in this study is developed as part of that project. Crucially,
search-based PCG requires a way of evaluating candidate content (such as maps and
rules) and assigning a fitness value. Due to the complex dynamics and synergies of
the various game mechanics an analytical approach seems infeasible. Furthermore it
couldn’t resemble various playing styles different players might show while playing
strategy games. It seems therefore reasonable to play through the candidate con-
tent and base the evaluation on how the agent performed when playing the content.

INTRODUCTION 17

For this to be possible, well-playing, computationally efficient and human-like AI is
necessary.

In contrast to board games, relatively little research on AI for computer strat-
egy games can be found in the literature. This can be seen as surprising, given the
huge popularity of such games (as discussed above). A partial explanation might be
the relative dearth of benchmark problems and associated software. Strategy games
come and go, and the state of the art develops rapidly. Even a long-lived strategy
game such as StarCraft had a shelf-life of just over ten years, whereas Chess has
been around for centuries. Further, many strategy games have closed source code,
lack public APIs and might be dependent on operating systems and hardware that
are quickly deprecated.

One attempt to provide just such a benchmark problem is the ORTS (Open Real-
Time Strategy) game, which includes several features common to RTS games as
they appeared around ten years ago [17]. A series of competitions were held based
on this benchmark, with relatively few but interestingly diverse competitors. One of
them is the SORTS agent, which is an application of the famous symbolic cognitive
architecture SOAR [18] to playing the ORTS game [19]. The last ORTS competition
was won by Hagelbäck and Johansson’s multi-agent potential field agent [20].

For some aspects of some aspect of strategy games, it is possible to use variations
of classic tree search techniques such as MinMax. For example, Churchill et al. [21]
use a heuristically enhanced version of AlphaBeta to play micro-scale combat sce-
narios in StarCraft.

However, many computer strategy games have enormous branching factors. This
would seem to pose a large problem for MinMax-based approaches, and a compar-
ative advantage for Monte Carlo approaches. MCTS has previously been applied to
tactical-level gameplay in WarGus, an open source clone of the WarCraft II RTS,
for multi-agent assault planning [22]. Monte Carlo techniques have also been ap-
plied to selected sub-tasks of playing the complex TBS “Civilization IV”, where the
stochastic action selection was additionally informed by parsing the game’s manual,
resulting in strategies that beat the game’s built-in AI [23].

Since the high branching factor on the micro decision level is very challenging for
AI systems, it may be more promising to limit their usage to macro level decisions
and rely on simpler techniques, e.g. fixed finite-state machines, for actual task execu-
tions. Olesen et al. used Neuroevolution of Augmenting Topologies (NEAT), which
we will discuss in more detail in section 10.4.3, to evolve agents for the game Globu-
lation 2. Through dimensionality reduction based on expert domain knowledge they
were able to create controllers that could adapt to a players’ challenge level offline
and in realtime [24].

It has also been observed that the problem of playing a complex game such as a
strategy game can productively be decomposed into several layers, e.g. “strategy”,
“tactics” and “micromanagement” (ordering individual units around). Most of the
above approaches take a monolithic view of the problem of playing strategy games,
but several of them are on the other hand only tested on part of the full strategy game
playing problem, for example only handling small-scale combat with perfect infor-
mation and no resource collection nor building. Weber et al. constructed a StarCraft-

18 AI FOR GENERAL STRATEGY GAME PLAYING

playing agent with a hierarchical architecture built on reactive planning, where a
number of “managers” working in parallel with different aspects of the gameplay are
organised in a tree [25].

As is the case AI for many other game genres, there appears to be a sharp discon-
nect between the approaches that have been applied to strategy games in academic
research and the AI that ships with commercial strategy games. Also, just like with
other types of game AI, there’s preciously little (perhaps nothing) published in the
academic literature about commercial strategy game AI. Informal conversations with
employees at companies developing strategy games, as well as presentations at pro-
ceedingsless industry-oriented conferences, suggest that much of commercial game
AI consists of rather ad hoc solutions, and often considerable cheating; in many
games, the computer player would not stand a chance against a medium-skilled hu-
man player without e.g. seeing the player’s hidden moves, or having troops magically
appear in besieged cities.

All of the above studies consider a single game, and often just a few selected
situations in a single game. There is also a shortage of studies that compare more than
one approach to playing a game. Given the significant differences between different
strategy games, it is possible that solutions specifically developed for a particular
strategy game fail to be effective in other strategy games. Arguably, progress on
AI for strategy games would be best served by an approach that compared several
promising methods on several strategy games.

10.2 Research questions and methodology

In this section, we address the problem of general strategy game playing. This means
that we want to create agents that can proficiently play a wide variety of strategy
games and scenarios, not just a single game or scenario. (The definition allows
the agents some time to adapt to the particular game and scenario.) We are setting
ourselves this challenge so as to ensure that the contributions we make have some
degree of generality, rather than just being useful hacks. At the same time, the range
of games our agents are supposed to handle is considerably more constrained than
the range of games expressed by the Stanford GDL, used in the General Game Play-
ing Competition [26]; all of the games considered in this chapter feature two players
moving a number of pieces each turn on a two-dimensional grid, where the pieces
are capable of annihilating each other and the winning condition is to remove the
opponent’s pieces. All of the game rulesets (referred to as models) and associated
scenarios used for the experiments are implemented in the Strategy Game Descrip-
tion Language (SGDL), a formalism and game engine capable of expressing a broad
range of strategy games.

Six different agent architectures (plus variations) are implemented. These are
based on techniques that have been successfully applied on various forms of game-
related AI problems: playing board games (MinMax, Monte Carlo Tree Search), au-
tonomous agent control (Neuroevolution, potential fields), commercial video game
AI (finite-state machines) and strategy selection (classifier systems). Two different

RESEARCH QUESTIONS AND METHODOLOGY 19

random agents are also implemented for comparison. For those architectures that are
based on some form of learning algorithm, relatively extensive training is performed
for each agent on each model. We ensured, that each architecture was provided with
an equal amount of training time.

Two different kinds of evaluation of the agents were conducted. The first was an
extensive playout of every agent against every other agent on all of the defined mod-
els. From this, the relative performance (in terms of winning/losing games) of trained
agents against each other can be gauged. The second evaluation form was interac-
tive: human players played against at least two different agents each, using different
game models, and answered questions about their preferences between those agents.
From this we can gathered both objective data (which agent was best against human
players?) and subjective (which was best-liked?) about these agents’ interactions
with humans.

The questions we are addressing in this chapter, and which we claim to be able to
answer at least partially, are the following:

Is it possible to construct agents that can proficiently play not just one but a
range of different strategy games?
How can we adapt some specific AI techniques that have been successful on
other game-related problems to work well with strategy games?
Which of these techniques work best in terms of raw performance?
Which of these techniques make for the most entertaining computer-controlled
opponents?

10.2.1 The SGDL and its framework

The Strategy Games Description Language (SGDL) is a model-based approach to
develop strategy games. Previous approaches for other domains [26, 27] have used
different paradigms, while we are formalising game mechanics as object-attribute-
action relationships. This concept is commonly used in object oriented programming
and its application has been discussed in the game design community [28, 29] before.
The SGDL framework is an ongoing project at the IT University of Copenhagen,
with the main goals of being able to express strategy games’ mechanics and auto-
matically generate them. In this section we will briefly introduce its relevant aspects
for general gameplaying. More information about SGDL is available in previous
publications [15, 16, 2] and on a dedicated web page2.

The basic idea is that all constituative [29] rules are expressed in a tree-based
model. This tree contains nodes about all game object types and their abilities and
how they interact. The model also contains information about goals for every player
and the creation of maps. A special game engine then interprets the model and con-
structs the game world and fills it with instances of objects specified in the model.
Part of that process is to configure the user interface in a way the user can interact
with objects in the game world. The game engine can either use its default asset set

2http://game.itu.dk/sgdl/

20 AI FOR GENERAL STRATEGY GAME PLAYING

Figure 10.1 A typical screenshot from our example game “RockWars”. Both players have
a factory each with which to produce units, which can in turn kill the opponent’s units. The
rocks serve as obstacles.

(please refer to Figure 10.1 for an example) or annotations in the model that con-
trol how the game engine should visualise information (such as textures, 3D models
or sounds). The game engine also provides an application interface for automated
gameplay, basing on the same interaction model as the graphical client uses, i.e. ar-
tificial agents are not able to cheat by directly manipulating the game’s internal data
structures.

To summarise, the essential information a model must contain is:
The map type
Templates for all objects in the game, units and buildings alike.
Winning condition(s)

The map is specified as a type from a given library (e.g. rectangular or hexagonal
tiles), its proportions, and what properties such as resources each tile might have.
However, the model does not include the topology of the map, i.e. how things are
arranged on the battlefield. While a general purpose map generator for arbitrary
strategy games might be possible, it is not within the current scope of our project.
It would require expert knowledge about the requirements for a “good” map for a
particular game. Recently Togelius et al. proposed several criteria for good maps for
the game Starcraft [14], and Mahlmann et al. presented a map generation case study
for Dune II [30] based on SGDL. Instead the creation of the map is controlled here
by a map generator that must be written for a specific model.

Object templates are the core idea of the SGDL framework. ”Object“ herein refers
to anything that could be placed on the map, including units and buildings owned by

THE GAME, THE AGENTS AND THE ASSIGNER 21

Agent/Player

Decider

Environment

Percepts

Actions

Commander

Units Buildings

State

Actuator

Figure 10.2 The Commander framework used for the agents in the study.

players. Each class has attributes and abilities, the latter consist of conditions that
must be fulfilled before the action can be invoked, and consequences that come into
effect once the action is triggered. Winning conditions are defined analogous to
object actions. Both conditions and consequences are also modelled as a tree on
a micro level: conditions consist of comparator nodes, and consequences contain
operators/assigners.

10.3 The game, the agents and the assigner

In the games used in our experiments, each player starts with a non-moveable build-
ing which possesses the ability to spawn new units. All units take 1 turn to produce.
Each unit costs a certain amount of a resource based on the SGDL model. The play-
ers’ resources and the unit costs are tracked within a part of the SGDL called the
game state. The template for this game state is read from the loaded SGDL model,
i.e. the unit costs and starting resources depend on the loaded model. Each unit has
one action per turn, and may select any possible action defined for its class. One of
the possible actions could be to move to an unoccupied map tile or shoot at an enemy
unit. If a unit loses all its health points it is removed from the game. If a player loses
all his units (besides his factory) and has no resources left to produce new units, his
opponent wins the game. Should the game take longer than 100 turns, the game is a
draw.

The agents in the study are based on a hierarchical agent framework named the
“Commander framework” based on the Intelligent Agent Architecture by Russel and
Norvig [31], as can be seen in Figure 10.2. The framework consists of a commander
entity on the highest logical layer, and sets of unit and building entities. Objects in
a game belonging to an agent are linked to these sets of unit and building entities
in the framework, while the commander entity is a strategic entity only. Thus the
framework is separated in a higher level layer, called the strategic layer, and a lower
level layer, called the unit layer.

The framework was designed such that it can be used by game tree based tech-
niques as well as multi-agent techniques. This is possible by the two-way commu-

22 AI FOR GENERAL STRATEGY GAME PLAYING

nication between all types of entities, which allows a commander to control units
and/or buildings, units and buildings to act autonomously or any other combination
necessary.

The communication with the SGDL game engine is maintained through two util-
ity systems named State and Actuator. Because the SGDL model of a game consists
of an unknown quantity of percepts and actions with unknown properties, it is benefi-
cial for non game tree based techniques to use a system that categorises percepts and
actions into sets of known quantities and properties. An agent may test if a specific
action is possible at any time during his turn by testing its conditions. The SGDL
framework also supports supplying all possible actions for a certain unit. This is
done through testing all the conditions of all of the actions that object could theoret-
ically invoke. Actions which require an additional object (target object) are tested
with all objects that are also on the map. Because of a pre-set constraint, no action
in our games requires more than two objects (acting object and target object) we can
limit the search to one extra object. Otherwise conditions would have to be checked
against all permutations of objects on the battlefield. Although an agent with more
domain knowledge might apply a faster and more efficient way to select actions, the
agents described in this chapter rely on the set of possible actions created through the
described “brute-fore” search method. If an agent submits an action to the framework
that is not possible, it would simply get denied.

The State system consists of a set of general information that captures a subset
of the percepts thought to be the minimum amount of information necessary for
agents to react meaningfully to the game environment. Included in the set of states
are the type of class of the unit, its health, the distance, angle and relative power
of the nearest three opponents, the distance and angle of the nearest two obstacles
and the distance and angle of the opponents building. The Actuator system uses a
one ply game tree search in order to determine the effect of all given actions, and
categorises them into a finite set of actions with known effects. Included in the set of
actions are the attack actions that do the most damage to opponents, actions that kill
opponents and actions that cause movement in one of eight possible directions. The
disadvantage of these systems is that information is no longer complete given the
categorisations made, but they decrease the search space by a very large magnitude;
a requirement for many techniques to do meaningful searches.

Another utility function was developed for commander entities, which can pro-
vide additional information in terms of a relative measurement of power of unit ob-
jects relative to each other and can assign orders to unit entities on the lower layer.
Relative power information is gained through short simulations of the unit object
types against each other, where power is based on the steps it takes for one to kill
another. The order assignment is done through a neuroevolutionary approach based
on NEAT [32]. A bipartite graph that consists of the set of units belonging to an
agent are fully connected to a set of units that belong to the enemy. Each edge of the
bipartite graph is weighted by a neural network evolved through NEAT with a set of
information relevant to each edge, i.e. distance, health and relative power measure-
ment between the units connected. Assignments are determined by hill climbing,

THE GAME, THE AGENTS AND THE ASSIGNER 23

Table 10.1 Unit properties for SGDL models

SGDLs

Unit properties Chess Shooter Melee RPS Random

Random cost X × X X X

Random health X × X X X

Random ammo X × X X X

Random damage X × X X(special) X

Random range × × × X X

Movement note Special 1-step 1-step 1-step 1-step

where the highest valued edges of the bipartite graph are selected for each unit that
requires an assignment.

To test the agents’ flexibility with different SGDL models, five distinct models
were created to represent different strategy gameplay aspects. As seen in table 10.1,
the models were named chess, shooter, melee, rock-paper-scissor (RPS) and random.

Rock-paper-scissors (RPS): a balanced strategy game where each unit can do
heavy damage to one other class of unit, light damage to another and no dam-
age to the third. This mirrors a popular configuration in strategy games where
tanks are effective against foot soldiers, foot soldiers against helicopters and
helicopters against tanks. All units have a movement of one.
Melee: Similar to the RPS model, but all units have an attack range of one,
forcing them to chase and entrap each other.
Shooter: Perhaps to the model that is most similar to a standard strategy game.
Shooter has 3 different classes, a sniper, a soldier and a special operations agent
(special ops). The sniper has high range, medium damage and low health, the
soldier has medium range, low damage and high health and the special ops has
low range, high damage and medium health.
Random: Units are only able to move one step, and the cost, health, ammo and
damage of each class against all others is randomised for every game.
Chess: A simplified chess game with unit movements and capabilities inspired
by the rook, knight and bishop pieces.

The properties of all the models used are summarised in table 10.1. There was
a limit of 100 turns per game and a limited amount of units which could be built
based on their cost. The players started with an equal random amount of money
that could be spent on units. The games are turn based, and there is no fog of war.
The models described above determine the rules of each game. Any action, be it
movement, shooting or similar, constitutes a turn, and so does doing nothing. Units
are symmetric for the players in all games regardless of models and maps.

24 AI FOR GENERAL STRATEGY GAME PLAYING

Webserver

Clients - training Clients - experiment

Figure 10.3 Client-server system used for training and experimentation.

10.3.1 Implementation details

The software was developed as a console Java application, relying on a number of
commonly used open-source Java libraries, in particular Apache Commons, Log4J,
SqLite and XStream. It exposes the framework and the AI agents to a web server as
illustrated in Figure 10.3. The client-server system allows clients to train and conduct
experiments, and the web server to collect the data generated by the clients. Not only
did it allow for a real-time view of the training or experimentation progress, but it also
ensured that data was safely collected and classified. Client-server communication
was done through the HTTP protocol by GET and POST requests to various PHP
scripts that fetched or updated data in a MySQL database server-side. The models,
maps and training data was stored server-side and requested by the clients, and the
clients responded with results.

It was deployed to approximately 50 computers installed in lab rooms at IT Uni-
versity of Copenhagen. All computers ran Windows XP and were based on Intel
Core 2 Duo processors. Most experiments were run over night, watched over by the
two first authors. We did not keep track of the exact time consumption for the exper-
iments, but had we done so the processing time would be measured in weeks or tens
of weeks.

10.4 Agents

We created eleven agents based on several different techniques as presented in Ta-
ble 10.2. The non-learning agents’ main purpose was to serve as training partners
for the evolving agents, but were also included in our experiments. The following
sections will cover the details of each agent implemented.

AGENTS 25

Table 10.2 Agents in the study

Agent name Purpose

Random Opponent in agent test

SemiRandom Training, Opponent in agent test

FSM Training, Opponent in agent test, Human play testing

NEAT Agent versus Agent testing, Human play testing

NEATA Agent versus Agent testing

MinMax Agent versus Agent testing, Human play testing

MCTS Agent versus Agent testing, Human play testing

PF Agent versus Agent testing, Human play testing

PFN Training

XCS Agent versus Agent testing

XCSA Agent versus Agent testing

s0start s1

a0 m0

k

⊥

f
⊥

Figure 10.4 Finite-state automata of the SemiRandom agent units

10.4.1 Random action selection

Two agents that rely on random action selection were created in this study to train
the evolving agents and to provide a performance baseline. Both agents are capable
of fitting into a multi-agent framework, as the logic executes on the level of the
individual unit and not at a strategic level. These two agents are the Random agent
and the SemiRandom agent.

The Random agent selects a random action from the set of possible actions given
by the Actuator, resulting in random behaviour. The SemiRandom agent is designed
to move randomly but use the best available offensive action possible, thus making
it an offensive but largely immobile opponent. The agent uses the Actuator as well,
which guarantees that the most effective actions in the game are used. As can be
seen in Figure 10.4, a finite-state automaton or finite-state machine [33] is used to
determine the action to perform.

26 AI FOR GENERAL STRATEGY GAME PLAYING

s0start s1 s2 s3 s4

a0 a1 m0 m1

kt

⊥

ko

⊥

ft

⊥

fo

⊥

bt
⊥

Figure 10.5 Finite-state automaton of the FSM agent’s units

10.4.2 Finite-state machine

Similar to the random agents, the finite-state machine (FSM) agent was created to
provide a performance baseline and a training partner for other agents. It utilises a
finite state machine architecture with movement selection based on a local breadth
first search. Figure 10.5 shows the structure of the automaton for the units, where
the Actuator is used for action selection analogue to the random agents. The FSM
agent is an effective opponent, but it requires hand-coded domain knowledge about
the game model.

Congruent to the SemiRandom agent, an ordered sequence 〈s0, . . . , s4〉 of tran-
sitional states is traversed. Unlike the SemiRandom agent, the FSM agent requires
a hostile target for each individual sub-agent in order for a search to be successful;
it is also used for attack selection as the target is prioritised. The accepting states
are {a0, a1,m0,m1}, and are given by the Actuator. Since the FSM agent favours a
targeted unit, the kill and attack conditions k and f are subdivided into kt, ko and ft,
fo where t is the target, and o is any other unit. The breadth-first search is designated
as bt, where the bt condition is true if the breadth-first search is able to find a path
towards the target. In this case the accepting state m0 selects the first movement
action which leads along this path.

The breadth first search is local because it has a limited amount of movement
actions that can be searched; an expansion limit. In order for the search to be effec-
tive, a distance heuristic was applied on the ordered sequence used for expansion of
moves in the search. When the limit has been reached the search terminates and the
action with the shortest distance to the target is executed.

10.4.3 Neuroevolution of augmenting topologies

The Neuroevolution of Augmenting Topologies (NEAT) agents are based on the evo-
lutionary algorithm for neural networks developed by Stanley and Miikkulainen [32].
This algorithm has previously been used with success for evolving agent controlling
neural networks in, but not limited to, shooter games and racing games. The tech-
nique is a form of topology and weight evolving artificial neural network (TWEANN),
such that it not only optimises weights in a neural network, but also constructs the
network structure automatically via artificial evolution. Within the NEAT agents,
action selection is based on an artificial neural network that has been trained through

AGENTS 27

machine learning using evolution. A fitness function evaluates the performance of
genomes in a population, and the fittest members are subsequently selected for the
creation of new members by combining their genetic information through a cross-
over genetic operator [34, 35].

Given the nature of artificial neural networks that they can approximate any func-
tion given an arbitrary large network [36], and a topology which evolves to a func-
tional structure, the agents are able to learn general gameplaying depending only on
the fitness function. However, in this implementation the State and Actuator utilities
were used to simplify and normalise the number of inputs and outputs. This means
that the technique operates on a subset of the actual state and action space of the
games, as was discussed in section 10.3.

The two following agents have been created that use an artificial neural network
evolved through NEAT:

1. NEAT agent (Neuroevolution of Augmenting Topologies agent)

2. NEATA agent (Neuroevolution of Augmenting Topologies agent with Assigner)

The fitness function used for the successful NEAT agent - out of several investi-
gated in the study - can be seen in equation (10.1). Here w is the amount of wins, l is
the amount of losses, and d is the amount of draw games. Each genome is tested in
six games against three opponents, and evaluated using this function. The function
was made to force the agent into avoiding draw games and prioritise winning. How-
ever, its behaviour is consistently hesitant to pursuing opponents, and instead waits
for the opponent to approach.

fNEAT (ai) =
w

w + l + d
(10.1)

Several fitness functions were investigated, using more information than just the
winrate as above, such as including a normalised distance measure to encourage a
behaviour which engages opponents more; a flaw of the above fitness measure. How-
ever, the winrate decreased when using these information additions, even though the
behaviour of the agent became more as desired in that it would aggressively pur-
sue the opponent. The problem might be caused by conflicting objectives; pursuing
seems to counteract its ability to win. Equation (10.1) received the largest amount of
victories, and was thus chosen for training.

The NEATA agent has one variant which can be seen in equation (10.2). Here s
is the number of successful orders carried out by units given out by the Assigner (see
section 10.3), b is the number of kills that were not given by orders and q the number
of failures to perform orders, e.g. the death of a friendly unit. It is normalised to the
number of units which have received orders.

fNEATA(ai) =

∣∣∣∣∣s+ b
4 −

q
4

u

∣∣∣∣∣ (10.2)

The function drives the agent to evolve a behaviour that can successfully kill the
hostile unit which has been designated as a target, and potentially kill any other

28 AI FOR GENERAL STRATEGY GAME PLAYING

hostile unit it encounters on its way. Because of the negative value given for a failure,
it also attempts to avoid destruction while carrying out the orders.

10.4.4 MinMax

The MinMax agent is based on the classic MinMax algorithm with alpha-beta prun-
ing [31], which is one of the simplest and most popular algorithms for playing games
and which has achieved considerable success on board games with low branching
factors, like Chess and Checkers.

When implementing game tree search-based agents, it was decided that every
branch in the search tree represents a set of actions, one action for each friendly
moveable unit. We will refer to such a set as a MultiAction in the following.

Both game tree agents run in the Commander-Structure within the Commander
framework as seen in Figure 10.2. After a search has been executed, the best Multi-
Action is determined and its actions are distributed to the units. Neither the MinMax
nor the Monte Carlo Tree Search (MCTS) agent (presented in the following subsec-
tion) use State or Actuator as the algorithms search ahead through potential actions.

Implementing MinMax with alpha-beta pruning into an agent required the modi-
fication of the algorithm as its runtime complexity grows rapidly with the branching
factor and depth of the tree. Since the amount of units and actions are unknown in
the model, a limit had to be placed on the amount of MultiActions possible. With-
out a limit, too many MultiActions could cause the agent to play poorly or become
dysfunctional.

To limit the MultiActions, depth first search (DFS) is performed on a tree with
moveable units and actions. Please refer to Figure 10.6 as an example, where Ux is
moveable unit x, and Uxy is its action y. The DFS is limited to only choose from the
child nodes of its current best choice, starting from the root. For example, should the
DFS chooseU1attack overU1flee, it would then have to choose betweenU2attack and
U2flee. When a leaf is found, the MultiAction (built from path of actions selected
from root to leaf) is saved, and the DFS moves one step back towards the root and
selects again.

To help guide the selection of MultiActions, a heuristic is needed to evaluate how
advantageous a game state for an agent is. The heuristic used is the same board
evaluator used within MinMax when a maximum depth is reached. Constructing a
heuristic for changing models proved to be a challenge as units in class 1 might have
different actions and attributes in different SGDL models. A static heuristic would be
near impossible to construct and instead a neural network was evolved using NEAT
with the inputs: the health ratio between friendly and hostile units and the average
euclidean distance to nearest enemy, weakest enemy, friend and enemy building. The
single output of the network is how favourable the board configuration is. The neural
network was evolved by evaluating its performance based on its win rate against a
set of test agents of varying behaviour.

To help MinMax predict the actions of the enemy, even without units currently
on the board, the buildings and their actions had to be implemented in the tree seen
in Figure 10.6. This would further increase the amount of MultiActions if every

AGENTS 29

U1

U2 U2

U1attack

U2attack U2flee

U1flee

U2attack U2flee

Figure 10.6 Action tree used to find MultiActions, performed at each node in the search
tree.

U1

U2

Building Building

U2

Building Building

U1attack

U2attack U2flee

U1flee

U2attack U2flee

U2 U2 U2 U2

Figure 10.7 Action tree illustrating the use of buildings. The building nodes are allowed
only one child each to limit the complexity.

action of the building is represented. It was therefore chosen to limit the buildings’
actions to one. The unit produced in the search tree would be decided randomly (see
Figure 10.7).

10.4.5 Monte Carlo Tree Search

The Monte Carlo Tree Search (MCTS) agent is based on the MCTS algorithm, which
has recently seen considerable success in playing Go [11]. Even though MCTS
is known for handling trees with large branching factors, the branching factor of
most SGDL models is drastically higher than Go. Considering this issue, the MCTS
agent was implemented with the same MultiAction filter as the MinMax agent. Once
MCTS was implemented, it could be observed that the algorithm only produced
100-150 Monte-Carlo simulations per second due to the computational overhead of
cloning in Java. As a solution to this, MinMax’s board evaluation function was used

30 AI FOR GENERAL STRATEGY GAME PLAYING

instead of the play-out phase. The regular play-out outcome zi of simulation i is
replaced with a state value approximation, which is backpropagated towards the root
as normal. The Monte-Carlo value (Q) can be seen in equation (10.3), where Γ is
an indicator function returning 1 if the action a was selected in position s at any
of the i steps, otherwise 0, N(s, a) is the amount of simulations through s where
action a was chosen, and N(s) =

∑|A(s)|
i=1 N(si, ai), where A(s) is a finite set of

legal actions from state s. The change of playout-phase in MCTS gave a significant
improvement in Monte-Carlo simulation count.

Q(s, a) =
1

N(s, a)

N(s)∑
i=1

Γi(s, a)zi (10.3)

Several tree policies were tested such as UCT [37] in Equation (10.4), progres-
sive bias [38] in Equation (10.5), Monte-Carlo Rapid Action-Value Estimation (MC-
RAVE) in Equation (10.6), (10.7) and (10.8) and UCT-RAVE in Equation (10.9) [39,
40].

UCT solves the exploration dilemma by utilizing the UCB1 [41] algorithm by
scaling the exploration factor c, so the amount of exploration can be limited.

QUCT (s, a) = Q(s, a) + c

√
log(N(s))

N(s, a)
(10.4)

Progressive bias is an added heuristic to the standard UCT heuristic to guide the
search. The impact of the heuristic lessens as simulations through state s using action
a increase.

Qpbias(s, a) = Q(s, a) + c

√
log N(s)

N(s, a)
+

H(s,a)

N(s, a) + 1
(10.5)

The RAVE values in MC-RAVE quickly converges a bias value Q̃(s, a) for action
a from the subtree of the node representing state s. Since this value is biased, MC-
RAVE uses a decreasing factor β(s, a) relying on a k-value to determine how fast the
factor decreases. Sylvain Gelly and David Silver found the highest win rate in Go
using a k-value of 3000 [39]. Due to lower MCTS iterations, the k-value had to be
lowered in the experimentations to faster rely on the actual Monte-Carlo values and
not the biased RAVE-values. Because the MCTS agent used a heuristic, the biased
RAVE-values were evaluations from subtrees instead of actual playout values.

QMCRAV E(s, a) =
(
β(s, a)Q̃(s, a) + (1− β(s, a))Q(s, a)

)
(10.6)

β(s, a) =

√
k

3N(s) + k
(10.7)

AGENTS 31

Q̃(s, a) =
1

N(s, a)

Ñ(s)∑
i=1

Γ̃i(s, a)zi (10.8)

UCT-RAVE adds the exploration factor c
√

log N(s)
N(s,a) from UCT to MC-RAVE.

QUCTRAV E(s, a) = QMCRAV E(s, a) + c

√
log N(s)

N(s, a)
(10.9)

When testing the algorithms, MC-RAVE showed the highest win rate best with k-
value of 10. During the experiments, a pattern seemed to emerge. UCT-RAVE (c =
0.1) scored a worse win rate than MC-RAVE against FSM (38.95% vs. 45.96%),
SemiRandom (32.63% vs. 37.89%) and Random (56.49% vs. 66.14%) with p-values
0.05, 0.16, and 0.02. For the MCTS agent, UCT (c = 0.1) performed worse than
UCT (c = 0). It seemed when MCTS iterations were forced to explore, rather
than focusing on the early best looking child nodes, the win rate was decreasing.
This is most likely caused by either a too low iteration count and/or the use of a
board evaluation function, replacing the regular play-out phase. If the reason is a
too low iteration count, giving the algorithm more time to think (more than one
second) would increase the iterations and might as a result possible reward the act
of exploring child nodes of less immediate interest. On the other hand, raising the
time constraint to more than a second seems not desirable, as it most likely would
affect the experience of a human player in a negative way; even though we are only
considering turn-based games. Also, due to replacing the playout-phase with a neural
network evolved using NEAT, might affect the Monte Carlo-value by setting it close
to its exact value even after only a few iterations - and exploration would therefore
become obsolete.

10.4.6 Potential fields

The potential field (PF) agent developed in this chapter is similar to the multi-agent
potential field approach which has recently shown good performance in some real-
time strategy games [42, 43, 44]. The potential of a point on the map of the game is
expressed as in equation 10.10, where P is a set of potentials and w(pn) is a function
that maps a weight to potentials and the pheromone trail. Potential functions take a
distance from the x and y variables and the position of the potential pi using the eu-
clidean distance. A pheromone trail is given as k, which is a trail of pheromone left
by each unit, where each individual pheromone is weighted inside the pheromone
function, such that they decrease in strength over time. As such, they serve as a neg-
ative trail of potentials with decreasing effect, and forces the units to move in paths
not previously taken. There is a potential for each object on the map which contains
the position of the object, and additional input variables not given in equation 10.10
that apply specifically for the various potentials depending on their purpose.

32 AI FOR GENERAL STRATEGY GAME PLAYING

f(x, y) =

|P |∑
i=1

(pi (d)w(pi)) + (k(x, y)w(k)) (10.10)

By using this formula to calculate the potential of a point, it is not necessary to
calculate the global field of the map. Each unit contains its own potential field, which
is calculated for the legal moves that it can make in its turn, and in order to keep the
pheromone trail local to the unit.

phostileunit(d) =

(
|m−d|
m

)2
power, if power > 0;

−
(
|m−d|
m

)2
1
2 , otherwise.

(10.11)

As there is a potential for each object, and given that there are different types
of objects, multiple potential functions such as the one in Equation (10.11) were
formulated. The above function creates a potential for hostile units, where m is
the maximum distance on the map, d is the distance between the sub-agent and the
hostile unit, and power is the relative power measure given by the Assigner utility.
Various other functions are given for friendly units, buildings obstacles etc.

An additional agent named PFN with a negative sign in Equation (10.11) was
used for training, as it would avoid enemy contact and require the agents trained to
learn how to give chase.

10.4.7 Classifier systems

Two agents were implemented based on eXtended Classifier Systems (XCS) [45]: a
regular XCS agent and a XCSA (eXtended Classifier System using Assigner) agent
using the Assigner for orders. Both agents operated within the units and are not using
the Commander entity in the Commander Architecture as seen in Figure 10.2. All
units for both agents shared the same XCS structure, resulting in shared information
about the environment.

The XCS classifier system builds on Holland’s Learning Classifier Systems [35]
(LCS) which is a machine learning technique that combines reinforcement learning
and evolutionary computing. A classifier system creates rules through evolutionary
computing and tries to predict the external reward by applying reinforcement learn-
ing through trial and error. LCS changes the fitness of the rules based on external
reward received, while XCS uses the accuracy of a rule’s prediction.

To adapt to changing SGDL models, the XCS structure was slightly modified.
In Wilson’s XCS a covering occurs when the amount of classifiers in the Match set
is below a threshold. Following Wilson’s advice by populating through covering,
setting such a threshold can be difficult with changing SGDL models, as the amount
of actions are unknown. A low threshold resulted in the Match Set filling up with
move actions, as attack actions were met later in the game when opponents were
engaged. The threshold was changed to force the XCS structure to have at least one
classifier for each possible action in the current environment.

RESULTS OF AGENT VERSUS AGENT TESTING 33

In some SGDL models, unit attributes changed over different games, therefore
classifiers representing illegal moves are removed from the Match Set.

To reward the Action Sets, the XCS agent had to wait for the game to end, in
order to receive a won, draw or loss from the game. All Action Sets a were then
rewarded through Equation 10.12. There, Ω is a function returning 1 for win and 0
for loss or draw, D is the average euclidean distance to nearest enemy and Dmax is
the maximum possible distance.

r(a) = 1000Ω + 500(1− D

Dmax
) (10.12)

The XCSA agent utilised the Assigner’s order updates throughout the game and
rewarded (see Equation 10.13, where Λ is the is the euclidean distance to the target)
immediately once it was told if the action was good or bad. Using Equation 10.13,
each order event signal was rewarded differently. Upon receiving a successful event
signal, the rewardorder was set to 1000. A mission cancelled or failed signal led
to rewardorder being 0, and should the unit receive the event signal of killing an
enemy outside the ordered target, 500 were set for rewardorder.

r(a) = rewardorder + 500(1− Λ

Dmax
) (10.13)

10.5 Results of agent versus agent testing

Before evaluating them, most of the agents needed to be trained in order to perform
well. Training was undertaken separately for each agent on each model, but always
against all three artificial opponents. It was ensured that all agents were trained for
the same amount of time (for fairness), and long enough, so a performance conver-
gence could be observed for each agent type.

The performance of the agents against the FSM, SemiRandom (SR) and Random
(R) agent in terms of the ability to win games on the different SGDL models and
maps was measured through experimentation. Nearly a million games in total were
run, concluding in the results presented below.

The results are analysed in terms of the win rate (WR) and the win loss ratio
(WLR), where the win rate is given as w

w+l+d and the win loss ratio is given as w
w+l .

Here w is the amount of games won, l is the amount of games lost and d is the
amount of games that ended in a draw. The win loss ratio ignores the draws, in order
to focus on the ratio of win/loss against opponents, but must be seen with respect to
the win rate which is the win ratio in terms of total games played.

In Table 10.3 the following terms are used; Opp. refers to the opponent agents,
W refers to won games, L refers to lost games, D refers to draw games, WLR refers
to the win loss ratio, WR refers to the win rate. The standard deviations are given
in Table 10.4 where the following terms are used; σWLR refers to the mean standard
deviation of the win loss ratio and σWR refers to the mean standard deviation of the
win rate. The terms σσWLR and σσWR denote the standard deviation of the population

34 AI FOR GENERAL STRATEGY GAME PLAYING

Table 10.3 Summary of agent versus agent results

Agent Opp. W L D WLR WR

MinMax FSM 3667 3264 1619 52.91% 42.89%

MinMax SR 2164 1584 4802 57.74% 25.31%

MinMax R 3787 297 4466 92.73% 44.29%

MCTS FSM 4038 2799 1713 59.06% 47.23%

MCTS SR 2549 947 5054 72.91% 29.81%

MCTS R 3930 225 4395 94.58% 45.96%

XCS FSM 16691 31865 7019 34.37% 30.03%

XCS SR 2695 5337 47543 33.55% 4.85%

XCS R 6226 1570 47779 79.86% 11.20%

XCSA FSM 13395 35280 6900 27.52% 24.10%

XCSA SR 2653 5771 47151 31.49% 4.77%

XCSA R 6622 1679 47274 79.77% 11.92%

PF FSM 25505 23643 6427 51.89% 45.89%

PF SR 11526 14461 29588 44.35% 20.74%

PF R 29711 1976 23888 93.76% 53.46%

NEAT FSM 26461 21741 7373 54.90% 47.61%

NEAT SR 4172 4496 46907 48.13% 7.51%

NEAT R 9759 1393 44423 87.51% 17.56%

NEATA FSM 20391 28308 6876 41.87% 36.69%

NEATA SR 2973 8122 44480 26.80% 5.35%

NEATA R 6726 2901 45948 69.87% 12.10%

RESULTS OF AGENT VERSUS AGENT TESTING 35

Table 10.4 Standard deviantions of agent versus agent results

Agent Opp. σWLR σWR σσWLR σσWR

MinMax FSM 0.05 0.04 0.02 0.02

MinMax SR 0.08 0.04 0.04 0.02

MinMax R 0.04 0.04 0.03 0.02

MCTS FSM 0.04 0.04 0.02 0.02

MCTS SR 0.07 0.04 0.02 0.02

MCTS R 0.04 0.04 0.04 0.02

XCS FSM 0.02 0.02 0.01 0.01

XCS SR 0.05 0.01 0.01 0.00

XCS R 0.04 0.01 0.03 0.01

XCSA FSM 0.02 0.01 0.01 0.01

XCSA SR 0.04 0.01 0.02 0.01

XCSA R 0.05 0.01 0.03 0.01

PF FSM 0.02 0.02 0.01 0.01

PF SR 0.03 0.01 0.01 0.01

PF R 0.01 0.02 0.01 0.01

NEAT FSM 0.02 0.02 0.01 0.01

NEAT SR 0.04 0.01 0.02 0.00

NEAT R 0.03 0.01 0.02 0.01

NEATA FSM 0.02 0.01 0.01 0.00

NEATA SR 0.04 0.01 0.02 0.00

NEATA R 0.04 0.01 0.03 0.00

36 AI FOR GENERAL STRATEGY GAME PLAYING

MinMaxMCTS XCS XCSA PF NEAT NEATA
0%

20%
40%
60%
80%

100%

FSM SR R

W
in

 lo
ss

 ra
tio

 (W
LR

) %

MinMaxMCTS XCS XCSA PF NEAT NEATA
0%

10%
20%
30%
40%
50%
60%

FSM SR R

W
in

 ra
te

 (W
R)

 %

Figure 10.8 Summary of agent versus agent results

of the standard deviations given in the above means. This is necessary as the samples
are divided on different models and maps.

In total, 8550 games were played for the adversarial search based agents MCTS
and MinMax and 55575 for the other agents. The previously mentioned computa-
tional complexity of the search based agents required us to make this differentiation
in order to perform the experiments in a reasonable time frame. The variation be-
tween samples, as seen in Table 10.3, is highest with MinMax and MCTS given the
smaller sample size, but it is low in general for all agents.

As can be seen in Figure 10.8 and Table 10.3, the MCTS, MinMax, PF and NEAT
agents have a WLR near or above 50%. XCS, XCSA and NEATA have a WLR
lower than 50% on all opponents other than the Random agent. Only the MCTS and
MinMax agent were able to defeat the SemiRandom agent. This may be because the
SemiRandom agent demonstrated quite good gameplay on most models. It tends to
gather its units in small clusters with effective selection of offensive actions based
on the finite-state automaton logic.

With regards to WR, most agents had a performance less than 50% against all
opponents because of draw games. The MinMax, MCTS and PF agents have the
highest performance in general in terms of their WLR as noted above, and a low
number of draw games compared to the other agents. The NEAT agent has a very low
WR, which is caused by a very high amount of draws. This is due to its behaviour,
which is similar to the SR agent, that it gathers in clusters near its spawn, and waits

RESULTS OF HUMAN PLAY TESTING 37

for the opponent. Breaking the turn limit of 100 results in a high amount of draws
against the SR and R agents which, in general, approach their opponent rarely. It
does however defeat the FSM agent, as it is built (via its incorporated BFS method)
to engage in a battle.

The XCS, XCSA and NEATA agents have a performance which was below the
chosen acceptable threshold of a WLR of 50% against the three opponents, and an
equally poor WR performance in terms of a high amount of draws games as well.

In conclusion, the MinMax, MCTS, PF and NEAT agents were determined to be
adequate in various models and map combinations, thus capable of general game-
play.

10.6 Results of human play testing

To test how enjoyable, human-like and challenging the agents were, we set up an
online user test system. Through the system human participants were paired up for
a Random game, after a short tutorial, with an agent and then for a second round
with another agent. Only the FSM, MinMax, MCTS, PF and NEAT agents were
used in this test. After the games a short survey was presented where players could
report their preferences regarding the opponent, game and the experiment itself. The
following four questions were asked after the two games were played:

1. Which opponent was more challenging?

2. Which opponent was more enjoyable to play against?

3. Which opponent played more like a human?

4. Disregarding the opponent, which game did you prefer?

All questions could be answered with either A, B, Neither or Both, where A and B
refer to the first and the second game session. The numbers presented in this section
are based on these self-reports.

The total number of participants was 60. The average age was 23.47 years and
95% of the participants were male. All participants played computer games in gen-
eral and all participants enjoy playing strategy games. Of the participants, 45% play
games for fifteen or more hours a week, 26.67% play games between ten to fifteen
hours a week, 18.33% play games between ten to six hours a week and 8.33% play
games between five to one hour a week. 23.33% consider themselves experts in
strategy games, 55% consider themselves advanced players and 20% consider them-
selves novices. One participant did not answer how many hours she plays games, or
what her self-assessed skill level was. It may be noted that the selection of partici-
pants is heavily biased towards young male experienced gamers, but given that most
of the players were recruited in an online community for strategy games, we con-
sidered this demographic as the core audience for our experiment and this was not
incorporated into our analysis; the effect of self-selection can therefore be neglected.

38 AI FOR GENERAL STRATEGY GAME PLAYING

FSM MinMax MCTS PF NEAT
0%

20%

40%

60%

80%

Winrate Challenging Enjoyable Human-likeness

W
in

 lo
ss

 ra
tio

 (W
LR

) %

Figure 10.9 Summary of human play results

Table 10.5 Summary of human play results

Agent Games Win rate Challenging Enjoyable Human

likeness

FSM 28 21.43% 35.71% 53.57% 21.43%

MinMax 26 30.43% 53.85% 38.46% 61.54%

MCTS 27 34.62% 33.33% 37.04% 25.93%

PF 21 38.10% 47.62% 47.62% 52.38%

NEAT 18 50.00% 55.56% 11.11% 27.78%

RESULTS OF HUMAN PLAY TESTING 39

As can be seen in Figure 10.9 and Table 10.5, the agent with the highest win rate
against humans was the NEAT agent with a win rate of 50%. The worst in terms of
win rate was the FSM agent with a win rate of 21.43%, which was in line with the
results gathered in the experiments against non-human opponents.

In terms of challenge, the NEAT agent was the most difficult with a challenge rat-
ing of 55.56%, and the least challenging was the MCTS agent with 33.33% followed
by the FSM agent with 35.71%. The MinMax and PF agents are above or near 50%
in terms of participants who fought the agents and found them challenging.

The most enjoyable agent was the FSM agent: 53% of the participants who fought
the agent found it enjoyable. The least enjoyable opponent was the NEAT agent with
only 11.11% of the participants rating it as such. The PF was found the second
most enjoyable agent with 47.62%, and both MinMax and MCTS were found nearly
equally enjoyable.

In terms of human-likeness, the most human-like reported agent was the MinMax
agent with 61.54% and the PF agent with 52.38%. The MCTS and NEAT agents
were not perceived human-like with only 25.93% and 27.78% respectively. The
least human-like agent was the FSM agent.

Although the NEAT agent was the best performing in terms of win rate and chal-
lenge provided for the participants, players reported it as less enjoyable or human-
like. This can be explained by its passive behaviour, not approaching the enemy;
some players even reported it as “broken”. This could also be observed in the tests
against non-humans, where it accumulated a large number of draws against the Semi-
Random and Random agents. The second best performing agent, in terms of win rate
and challenge, was the PF agent. It also provided a good level of enjoyment for the
participants, and was considered fairly human-like. The third best performing agent
was MinMax in terms of win rate and challenge, and provided a good level of en-
joyment for the participants, as well as being perceived as the most human-like. The
MCTS agent provided a better performance in terms of win rate and challenge than
the FSM agent, and was perceived more human-like. However, the FSM agent was
despite its low performance the most enjoyable agent of all five in the experiment.

Although the data is not completely conclusive, it shows that the agents based on
MinMax, MCTS, Potential Fields and NEAT performed better than the simple FSM
agent in terms of win rate, challenge and human-likeness. Analogue, those agents
showed a superior performance in terms of win rate and win loss rate against the
Random and SemiRandom agents in the non-human experiments. The only excep-
tion is the NEAT agent, which was unable to approach SemiRandom and Random
due to the reasons discussed. It can therefore be concluded from the non-human and
human experiments that the agents based on MinMax, MCTS and Potential Fields
have high skills in terms of their ability to play, that they are flexible under changing
rule-sets and capable to some degree at showing human-like behaviour. Given that
all agents perform a turn in less than a second for all models, we can state that all
agents have shown a reasonable runtime behaviour for our needs.

The NEAT agent was not enjoyable for the participants and it was not perceived
human-like. It was also unable to engage the Random and SemiRandom agents.
Therefore it cannot be considered well playing in general, but has shown potential

40 AI FOR GENERAL STRATEGY GAME PLAYING

in defeating skilled opponents. The Assigner decreased the performance in agents
when used to assign orders, but its ability to measure the relative power of enemy
units was beneficial. The XCS, XCSA and NEATA agents have shown a poor level
of skill in play against any opponent than the Random agent, both in terms of win
rate and win loss rate.

10.7 Discussion

While we have taken all the efforts that were reasonable within the time frame of the
project to ensure that all the agents were compared fairly, a complete fair compari-
son is in our opinion hardly even a theoretical possibility. As with all benchmarking
studies, there is intrinsic value in re-implementing algorithms and re-doing studies.
For example, our study does not show that classifier systems are necessarily worth-
less at playing strategy games; it is completely possible that there is a simple way
(which we overlooked) of overcoming the problems we faced with the XCS agents
and achieve a much better score. Still, it is interesting that despite our best efforts,
we could not bring the XCS agent to learn strategies that outperformed even the
simplistic SemiRandom agent.

The only two agent architectures that could reliably outperform all the bench-
mark agents (even in terms of win/loss ratio) were both tree search-based: MinMax
and MCTS. This could be seen as a victory of game-tree search over non-searching
methods. It is important to note that both the MinMax and MCTS agents used the
same board evaluation function, which is a neural network trained by NEAT. (The
board evaluation function was re-trained for each model.) Using the same evaluation
function could explain the similar (but not identical) performance profile. Thus, the
MCTS agent is just as reliant on a good evaluation function as the MinMax agent, so
these results could as well indicate the superiority of neuroevolutionary state eval-
uation functions. The NEAT agent, which learns state-action mappings rather than
state-value mappings, is among the better performing agents but scores slightly lower
than the tree-search agent. This finding agrees with the findings of previous compar-
isons of state-value and state-action mappings in other games, such as racing games,
where state-value mapping turned out to be superior [46].

The assigner framework, which was based on the idea of decomposing the Mul-
tiAction selection task hierarchically, did not meet our expectations. Both agent
architectures that used this framework (XCSA and NEATA) performed remarkably
worse than their counterparts which did not use the assigner (XCS and NEAT). We do
not think this should be interpreted as evidence against hierarchical agent architec-
tures in strategy games, but rather that it is hard to find the correct decomposition of a
control/game-playing task. Some experiments in evolutionary robotics suggest that a
decomposing a task manually might actually make it harder to learn, whereas allow-
ing an evolutionary process to decompose the task and structure the neural network
that learns it could bring significant improvements to performance [47]. This is taken
as the basis for an argument that tasks should be decomposed (and controllers struc-
tured) from a “proximal” itself (the controller itself) rather than a “distal” perspective

DISCUSSION 41

(the human experimenter). Future work could involve creating agents that automati-
cally learn assigner-like controller/task decompositions while they learn policies.

The relation between performance against the benchmark controllers and perfor-
mance and perceived qualities when playing against humans deserves further com-
ments. Let us start with win rates. It can be observed that controllers which won
often against the benchmark controllers also won often against humans. We see that
as a validation of the relevance of our benchmark agents. In fact, human players
seem to be only slightly harder to win against than the FSM agent for most of the
agents. On the other hand, the FSM agent plays very badly against humans, only
winning 20% of games.

One significant result is that the NEAT agent is the agent that wins most often
against human players (by a respectable margin) while being equally good or slightly
worse than the tree search-based agents against benchmark agents. The NEAT agent
also has a much lower win rate than win-loss rate against the SemiRandom agent,
indicating that many games between NEAT and the SemiRandom agent tends to end
in draws. On the other hand, the NEAT agent has a higher win-loss rate than win rate
against the FSM agent. To gain more information about this interesting pattern, we
visualised several games with the NEAT agent against both benchmark agents and
humans in our game player. We observed that the NEAT agent had evolved a very
conservative but effective strategy where it groups its agents close together, waits
for the enemy to approach, and defends. This is a highly efficient strategy against
aggressive players like the FSM agent (and most humans), but will most likely lead
to a draw against a more passive player like the SemiRandom agent.

A take-home message of the above analyses (and similar analyses that could be
done of the other agents) is that dominance relations between the agents here are non-
transitive; a strategy that works against strategy A might not work so well against
strategy B, even though A works well against B. In board game research, playing
strength is often seen as a scalar property, i.e. a complete ordering. It is unknown
whether this is true for games as complex as those models that were used in this
study as well, and whether the observed intransitivity is just a sign that the learned
strategies are unsophisticated.

At this point, we wish we would have been able to compare the outcomes of our
experiments with the results in literature. Unfortunately, we are not aware of any
study that investigates the capability of the same algorithm to play more than one
strategy game, not of any study that compares a number of significantly different
algorithms for playing a strategy game. The closest we can find is evidence collected
in a recent survey of MCTS outperforming rival tree search algorithms in a number
of domains which are not strategy games as defined here [48]. This is consistent with
the good results achieved by the MCTS agent in our experiments.

Our human test subjects’ perceptions of the agents’ playing strength differ sub-
stantially from the actual win rate. For example, the MinMax agent and NEAT agent
were perceived as equally challenging; yet, the MinMax agent won much less often,
and was perceived as much more enjoyable and dramatically more human-like. Vi-
sual inspection of the playing style of the MinMax agent shows that it plays much
more aggressively than the NEAT agent, and that while playing well, it tends to take

42 AI FOR GENERAL STRATEGY GAME PLAYING

unnecessary risks which allow the human to win. In our opinion, it is quite clear that
the MinMax agent would be better suited than e.g. the NEAT agent be included as a
computer opponent in a commercial strategy game.

One somewhat depressing result for researchers eager to include sophisticated AI
in games is that the agent which was deemed most enjoyable was the FSM agent,
which was a pushover in terms of performance and also rated as the least human-
like. It could however be argued that the results would have been different if the
players were more familiar with the particular games being tested.

During development of the agents, no importance was given to their human-
likeness. One future research direction that could be pursued could be to train the
trainable agents to display human-like playing styles. This could be done either di-
rectly, using supervised learning to imitate logged human strategies, or indirectly,
rewarding agents for displaying human-like behavioural traits [49].

All of the agents that we used were adapted from agent architectures used for other
game-related problems. Part of the goal of the current project was to investigate how
well these approaches fare when adapted to strategy games. We were quite surprised
to see how well the NEAT agent fared, even though it only does a one-ply search.
While the MCTS agent performed slightly better than the other agents overall, the
benefits of all this search are quite slim compared to the much increased computation
time. For a more complex strategy game (e.g. Civilization), even the current value-
based MCTS would likely be too computationally expensive. In sum, the methods
that are more often used for action games (NEAT, FSM and PF) worked surprisingly
well, and the search-based methods traditionally used for board games performed
less well than expected, probably because of the huge branching factor. This points
to the need for more research on methods that can handle this branching factor.

10.8 Conclusions

Seven different agent architectures were implemented, trained and tested against
three simple benchmark agents on six different turn-based strategy games imple-
mented in the SGDL environment. The agent architectures are inspired by methods
that have proven effective at playing board games, action games or real-time strategy
games. Additionally, four of the agents and one of the benchmark agents were tested
against human players, and the human players were surveyed for their perceptions
of the agent.

It was found that a combination of game-tree search (either MinMax or a version
of MCTS) and evaluation functions learned with neuroevolution performed best on
average against the benchmark agents, while the NEAT agent performed best against
human players but was rated as the least enjoying. A number of secondary findings,
discussed in the previous section, will inform further research on developing strategy
game playing agents that are capable of playing well, being human-like and/or fun to
play against. The agents developed during this study are already being used as part
of simulation-based fitness functions for the evolution of new game rules and game
maps.

REFERENCES

1. J. L. Nielsen and B. F. Jensen, “Artificial agents for the strategy game description
language,” Master’s thesis, IT University of Copenhagen, 2011. [Online]. Available:
http://game.itu.dk/sgdl

2. T. Mahlmann, “Modelling and generating strategy games mechanics,” Ph.D. dissertation,
ITU Copenhagen, December 2012.

3. R. F. Nohr and S. Wiemer, “Strategie spielen,” in Strategie Spielen. Lit Verlag Berlin,
2008, pp. 7–27.

4. S. Deterding, “Wohnzimmerkriege,” in Strategie Spielen. Lit Verlag Berlin, 2008, pp.
29–68.

5. R. Reichert, “Goverment-games und gouvertainment,” in Strategie Spielen. Lit Verlag
Berlin, 2008, pp. 189–212.

6. R. F. Nohr, “Krieg auf dem Fussboden,” in Strategie Spielen. Lit Verlag Berlin, 2008,
pp. 29–68.

7. A. Turing, “Digital computers applied to games,” in Faster Than Thought (ed. B. V.
Bowden). London, United Kingdom: Pitman Publishing, 1953, pp. 286–295.

8. A. Kotok and J. McCarthy, “A chess playing program for the IBM 7090 computer,”
Master’s thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineering,
1962.

9. A. Samuel, “Some studies in machine learning using the game of checkers,” IBM Jour-
nal, vol. 3, no. 3, pp. 210–229, 1959.

AI for General Strategy Game Playing.
By Jon Lau Nielsen, Benjamin Fedder Jensen, Tobias Mahlmann, Julian Togelius, and Georgios N.
Yannakakis Copyright c© 2013 John Wiley & Sons, Inc.

43

44 REFERENCES

10. M. Newborn, Kasparov Vs. Deep Blue: Computer Chess Comes of Age. Springer, 1997.

11. C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud, S.-R. Tsai, S.-
C. Hsu, and T.-P. Hong, “The Computational Intelligence of MoGo Revealed in Taiwan’s
Computer Go Tournaments,” IEEE Transactions on Computational Intelligence and AI
in games, vol. 1, no. 1, pp. 73–89, 2009.

12. I. Szita, G. Chaslot, and P. Spronck, “Monte-Carlo Tree Search in Settlers of Catan,” in
Advances in Computer Games, 2009, pp. 21–32.

13. J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based procedu-
ral content generation: a taxonomy and survey,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. in print, pp. 172 – 186, 2011.

14. J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N. Yannakakis,
“Multiobjective exploration of the starcraft map space,” in Proceedings of the IEEE Con-
ference on Computational Intelligence and Games (CIG), 2010, pp. 265–272.

15. T. Mahlmann, J. Togelius, and G. Yannakakis, “Towards procedural strategy game gener-
ation: Evolving complementary unit types,” Applications of Evolutionary Computation,
vol. 6624, pp. 93–102, 2011.

16. ——, “Modelling and evaluation of complex scenarios with the strategy game descrip-
tion language,” in Proceedings of the Conference for Computational Intelligence (CIG)
2011, Seoul, KR, 2011.

17. M. Buro, “Orts: A hack-free rts game environment,” in Proceedings of the Third Inter-
national Conference on Computers and Games, 2003, pp. 156–161.

18. J. E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR: an architecture for general intel-
ligence,” Artif. Intell., vol. 33, pp. 1–64, September 1987.

19. S. Wintermute, J. Z. Xu, and J. E. Laird, “Sorts: A human-level approach to real-time
strategy ai,” in Proceedings of Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE), 2007, pp. 55–60.

20. J. Hagelbäck and S. J. Johansson, “A multiagent potential field-based bot for real-time
strategy games,” Int. J. Comput. Games Technol., vol. 2009, pp. 4:1–4:10, January 2009.

21. D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for rts game combat sce-
narios,” in Proceedinges of Artificial Intelligence and Interactive Digital Entertainment,
2012.

22. R.-K. Balla and A. Fern, “Uct for tactical assault planning in real-time strategy games,”
in Proceedings of the International Joint Conference on Artifical intelligence (IJCAI),
2009, pp. 40–45.

23. S. R. K. Branavan, D. Silver, and R. Barzilay, “Non-linear monte-carlo search in civi-
lization ii,” in Proceedings of the International Joint Conference on Artifical intelligence
(IJCAI), 2011.

24. J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge balance in an rts
game using rtneat,” in Proceedings of the IEEE Symposium on Computational Intelli-
gence and Games, Perth, December 2008, pp. 87–94.

25. B. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive planning idioms for multi-
scale game AI,” in Computational Intelligence and Games (CIG), 2010 IEEE Symposium
on, aug. 2010, pp. 115 –122.

REFERENCES 45

26. N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, “General Game Play-
ing: Game Description Language Specification,” 2008.

27. C. Browne, Evolutionary Game Design. Springer, 2011.

28. M. Sicart, “Defining game mechanics,” Game Studies, vol. 8, no. 2, pp. 1–14, 2008.
[Online]. Available: http://gamestudies.org/0802/articles/sicart

29. K. Salen and E. Zimmerman, Rules of play: Game design fundamentals. Boston: MIT
Press, 2003.

30. T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Spicing up map generation,” in Pro-
ceedings of the 2012 European conference on Applications of Evolutionary Computa-
tion, ser. EvoApplications’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 224–233.

31. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson Edu-
cation, 2003.

32. K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting
Topologies,” Evolutionary Computation, vol. 10, pp. 99–127, 2002.

33. K. H. Rosen, Discrete Mathematics and Its Applications, 5th ed. McGraw-Hill Higher
Education, 2002.

34. M. Mitchell and S. Forrest, “Genetic algorithms and artificial life,” Artificial Intelligence,
vol. 1, no. 3, pp. 267–289, 1994.

35. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Apr.
1992.

36. R. Rojas, Neural Networks: A Systematic Introduction. Springer-Verlag, 1996.

37. L. Kocsis and C. Szepesvri, “Bandit based monte-carlo planning,” in Machine Learn-
ing: ECML 2006, ser. Lecture Notes in Computer Science, J. Frnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Springer Berlin / Heidelberg, 2006, vol. 4212, pp. 282–293.

38. G. Chaslot, M. Winands, J. H. van den Herik, J. Uiterwijk, and B. Bouzy, “Progressive
Strategies for Monte-Carlo Tree Search,” in Joint Conference on Information Sciences,
Salt Lake City 2007, Heuristic Search and Computer Game Playing Session, 2007.

39. S. Gelly and D. Silver, “Combining online and offline knowledge in UCT,” in ICML ’07:
Proceedings of the 24th international conference on Machine learning. New York, NY,
USA: ACM, 2007, pp. 273–280.

40. ——, “Monte-carlo tree search and rapid action value estimation in computer go,” Artif.
Intell., vol. 175, pp. 1856–1875, July 2011.

41. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit
problem,” Machine Learning, vol. 47, pp. 235–256, 2002.

42. J. Hagelbäck and S. J. Johansson, “Using multi-agent potential fields in real-time strategy
games,” in Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems - Volume 2, ser. AAMAS ’08. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2008, pp. 631–638.

43. ——, “The Rise of Potential Fields in Real Time Strategy Bots,” in Proceedings of
Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2008.

44. J. Hagelbck and S. Johansson, “A multi-agent potential field based bot for a full rts game
scenario,” International Journal of Computer Games Technology, vol. 2009, pp. 1–10,
2009.

46 REFERENCES

45. S. W. Wilson, “Generalization in the XCS Classifier System,” in Genetic Programming
1998: Proceedings of the Third Annual Conference, 1998, pp. 665–674.

46. S. M. Lucas and J. Togelius, “Point-to-point car racing: an initial study of evolution
versus temporal difference learning,” in Proceedings of the IEEE Symposium on Com-
putational Intelligence and Games, 2007.

47. R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner, “Duplication of modules facilitates
functional specialization,” Artificial Life, vol. 6, pp. 69–84, 2000.

48. C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search methods,”
Computational Intelligence and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp.
1–43, 2012.

49. N. van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber, “Robust player imitation
using multiobjective imitation,” in Proceedings of the Congress on Evolutionary Com-
putation, 2009.

