
Modelling and Generating

Strategy Games Mechanics

Tobias Mahlmann

Center For Computer Games Research

IT University of Copenhagen

A thesis submitted for the degree of

Doctor of Philosophy

March 2013

mailto:tmah@itu.dk
http://game.itu.dk
http://www.itu.dk

Abstract

Strategy games are a popular genre of games with a long history, originating

from games like Chess or Go. The word “strategy” is derived from the

Greek word strathgìc (strategós), meaning (the) general, resp. strathgeÐa,

meaning “art of commanding”. Both terms directly hint at the subject

of strategy games: warfare. Players must utilise armies and resources to

their advantage on a battlefield to win a “virtual war”. The first strategy

games were published as “Kriegspiele” (engl. wargames) in the late 18th

century, intended for the education of young cadets. Since then strategy

games were refined and transformed over two centuries into a medium of

entertainment. Today’s computer strategy games have their roots in the

board- and roleplaying games of the 20th century and enjoy great popularity.

In this thesis, we use strategy games as an application for the procedural

generation of game content.

Procedural game content generation has regained some interest in recent

years, both among the academic community and game developers alike.

When the first commercial computer games were published in the early

1980s, technical limitations prevented game developers from shipping their

titles with a large amount of pre-designed game content. Instead game

content such as levels, worlds, stories, weapons, or enemies needed to be

generated at program runtime to save storage space and memory resources.

It can be argued that the generation of game content “on the fly” has gained

popularity again for two reasons: first, game production budgets have risen

rapidly in the past ten years due to the necessary labour to create the

amount of game content players expect in games today. Secondly: the

potential audience for games grew in the past years, with a diversification

of player types at the same time. Thus game developers look for a way

to tailor their games to individual players’ preferences by creating game

content adaptively to how the player plays (and likes) a game.

In this thesis we extend the notion of “procedural game content generation”

by “game mechanics”. Game mechanics herein refer to the way that objects

in a game may interact, what the goal of the game is, how players may ma-

nipulate the game world, etc. We present the Strategy Games Description

Language (SGDL) and its adjacent framework, a tree-based approach to

model the game mechanics of strategy games. The SGDL framework allows

game designers to rapid prototype their game ideas with the help of our

customisable game engine. We present several example games to demon-

strate the capabilities of the language and how to model common strategy

game elements. Furthermore, we present methods to procedurally generate

and evaluate game mechanics modelled in SGDL in terms of enjoyability.

We argue that an evolutionary process can be used to evolve the mechanics

of strategy games using techniques from the field of machine learning. Our

results show that automated gameplay combined with expert knowledge

can be used to determine the quality of gameplay emerging from game me-

chanics modelled in SGDL, and that algorithms can augment the creativity

of human game designers.

iv

Acknowledgements

I would like to acknowledge all the individuals who provided me with in-

sight and inspiration, in the form of discussions or collaborations, and con-

tributed to my work and this thesis. Especially mentioned here should be

my supervisors Julian Togelius and Georgios N. Yannakakis and all the col-

leagues whom I met at the Center for Computer Games Research at the

ITU Copenhagen.

ii

Contents

List of Figures ix

List of Tables xi

Overview i

1 Introduction 1

1.1 Computational Intelligence in Games . 4

1.2 Published papers . 7

2 Strategy Games 9

2.1 The History of Strategy Games . 13

2.2 Strategy Games: The Delimitation of the Genre 17

3 Related Theoretical Frameworks 23

3.1 Modelling Player Experience: Qualitative Methods 23

3.1.1 Self-reported data . 25

3.1.2 Requirements elicitation . 26

3.1.3 Personality . 29

3.1.4 Flow . 29

3.1.5 Emotional State . 31

3.1.6 Immersion . 33

3.2 Modelling Player Experience: Quantitative Methods 34

3.2.1 Interest . 34

3.2.2 Physiological measures . 36

3.2.3 Tension in Board Games . 37

3.2.4 Measures from Combinatorial Games 38

iii

CONTENTS

3.2.5 Learnability . 42

3.3 Defining Game Mechanics . 44

3.3.1 Different Layers of Rules . 45

3.3.2 Games as Systems . 46

3.4 Summary . 47

4 Related computational intelligence in games research 49

4.1 Generating Content . 49

4.1.1 Search-based procedural content creation 49

4.1.2 Procedural Level Generation . 51

4.1.3 Interactive Storytelling . 51

4.1.4 Cellular automata . 52

4.1.5 L-Systems . 53

4.2 Computational Creativity . 54

4.3 AI and Learning in Games . 56

4.3.1 Game Tree Search . 56

4.3.1.1 Min-Max Search . 58

4.3.1.2 Monte-Carlo Tree Search 59

4.3.2 State machines . 62

4.3.3 Decision- and Behaviour Trees 63

4.3.4 Neural Networks . 63

4.3.5 Genetic Algorithms . 64

4.3.6 Genetic Programming . 65

4.4 Modelling and Generating Game Mechanics 66

4.4.1 Unified Modelling Language (UML) 66

4.4.2 Stanford GDL . 67

4.4.3 Answer Set Programming . 68

4.4.4 Ludi . 69

4.4.5 ANGELINA . 70

4.4.6 Fixed length genome . 71

4.5 Summary . 71

iv

CONTENTS

5 The Strategy Games Description Language (SGDL) 73

5.1 Design Paradigms . 73

5.2 Basic Concepts and Terms . 75

5.3 The SGDL Tree . 77

5.3.1 Attributes and Object References 78

5.3.2 Conditions . 78

5.3.3 Consequences . 82

5.3.4 Actions . 82

5.3.5 Multiple Consequences . 83

5.3.6 Action as Consequences . 85

5.3.7 Object Lists and Object Filter 85

5.3.8 Winning Conditions . 87

5.4 Surrounding framework . 87

5.4.1 Maps . 88

5.4.2 Game- and Player State . 90

5.5 Comparison to other Game Description Languages 91

5.6 Summary . 93

6 SGDL in Practice 95

6.1 Example Games . 95

6.1.1 Simple Rock Paper Scissors . 95

6.1.2 Complex Rock Paper Scissor . 96

6.1.3 Rock Wars . 98

6.1.4 Dune 2 . 102

6.2 Interlude: “Spicing up map generation” 102

6.3 Summary . 106

7 Automated Gameplay 109

7.1 The game, the agents and the assigner 110

7.2 Agents . 113

7.2.1 Random action selection . 114

7.2.2 Finite-state machine . 115

7.2.3 Neuroevolution of augmenting topologies 116

7.2.4 MinMax . 117

v

CONTENTS

7.2.5 Monte Carlo Tree Search . 119

7.2.6 Potential fields . 120

7.2.7 Classifier systems . 121

7.3 Results of agent versus agent training 122

7.4 Results of human play testing . 127

7.5 Conclusions . 131

8 Measuring Game Quality 133

8.1 A Definition of Balance . 135

8.1.1 Complementary Unit Types . 137

8.1.2 Fitness function . 140

8.2 The Outcome Uncertainty of a Game . 142

8.3 Avoiding a Start-Finish victory . 144

8.4 Fitness functions for Action subtrees . 146

9 Searching the Strategy Game Space 151

9.1 Balance and Complementary Unit Sets 152

9.2 Comparing balance to outcome uncertainty 155

9.2.1 Evolving actions . 158

9.2.2 The solution representation . 159

9.2.3 The Evolutionary Algorithm . 160

10 Overall Results 163

10.1 Further experiments . 168

10.2 Game in focus: a qualitative analysis . 171

10.3 Summary . 173

11 Beyond tactics: Conclusions and Discussion 175

11.1 Modelled Games . 175

11.2 New Game Mechanics . 176

11.3 The Strategy Games Description Language 177

11.3.1 Verbosity vs. Versatility . 178

11.4 The SGDL Framework . 179

11.5 Computational Complexity . 180

11.5.1 Status of the General Gameplaying Agents 180

vi

CONTENTS

11.6 Human studies . 181

11.7 Data Driven Evolution . 182

11.8 Lessons learned . 183

11.9 Concluding Remarks . 185

References 187

vii

CONTENTS

viii

List of Figures

3.1 Illustration of the concept of flow . 30

4.1 Game Tree of an arbitrary two-player game 57

4.2 The Mini-Max tree algorithm . 59

4.3 Example of a state machine . 62

4.4 A GP tree modelling the example y = 3x2 + 4x+ 12 66

5.1 Selecting an Action in the SGDL Game Engine 77

5.2 The overall SGDL tree. 79

5.3 Overview and graphical representation of the SGDL node types. 79

5.4 Accessing a property . 80

5.5 Two elementary examples of subtrees comparing constants. 80

5.6 Extended conditions . 81

5.7 A single assignment as a simple Consequence. 82

5.8 A simple Action with one Condition and one Consequence 83

5.9 Side effects of multiple attribute changes 84

5.10 Ordered Consequences can be denominated with indexed vertices. . . . 85

5.11 Actions as Consequences . 86

5.12 Examples for using an ObjectList. 87

5.13 Two examples of winning conditions . 88

5.14 Three ways of accessing a WorldObject on a map. 89

5.15 Examples of using the DISTANCE SpecialFunction 92

5.16 Accessing a game state variable in an Action. 92

6.1 Subtree of “‘Class A” of “Simple Rock Paper Scissor” 96

6.2 The attack action in simple Rock Paper Scissor 97

ix

LIST OF FIGURES

6.3 Screenshot of “Complex Rock Paper Scissors” 98

6.4 Adding range conditions to attack actions 99

6.5 Screenshot of “Rock Wars” . 100

6.6 The detailed subtree for a “Create” action in “Rock Wars”. 101

6.7 Dune II in the SGDL engine. 103

6.8 Screenshot of the Dune II map generator application 105

6.9 Generated Dune II map examples . 107

7.1 The Commander framework used for the agents in the study. 111

7.2 Finite-state automata of the SemiRandom agent units 115

7.3 Finite-state automaton of the FSM agent’s units 115

7.4 Action tree used to find MultiActions 119

7.5 Action tree illustrating the use of buildings. The building nodes are

allowed only one child each to limit the complexity. 119

7.6 Summary of agent versus agent results 123

7.7 Summary of human play results . 129

8.1 Rock-Paper-Scissors-Lizard-Spock . 137

8.2 Screenshot from Warcraft III . 138

8.3 Screenshot from Blue Byte’s Battle Isle II 139

8.4 Configurations for complementary unit sets in CRPS 141

8.5 Lead graph for an arbitrary two player game 145

9.1 Screenshot of the SGDL Editor prototype 152

9.2 The outcome uncertainty in Rock Wars 155

9.3 Overview of the evolutionary algorithm 160

10.1 An evolved Action . 165

10.2 An evolved action adjusting min- and maximum ranges 167

10.3 Fitness development over 100 generations 169

10.4 Fitness developments over all five runs of the experiment using γ =

0.5, λ = 0.5 . 170

x

List of Tables

7.1 Unit properties for SGDL models . 114

7.2 Agents in the study . 114

7.3 Summary of agent versus agent results 124

7.4 Standard deviantions of agent versus agent results 125

7.5 Results of the agent tournament . 126

7.6 P-values for the human play results . 128

9.1 A unit type set with fitness 0.0. 153

9.2 A unit type set with fitness 0.24. 154

9.3 A unit type set with fitness 0.57. 154

9.4 The correlation between different properties of sampled games of CRPS 157

9.5 The correlation between different properties of Rock Wars 157

9.6 Overview of the attributes of each class in CRPS 159

10.1 The weighting factors used in five different experiments. 164

10.2 Attributes of the classes found after 100 generations 168

xi

LIST OF TABLES

xii

Overview

This thesis is organised as follows: first, I will try to motivate the research questions

addressed in this thesis by outlining the historical development of procedural content

generation in games and the enclosing academic field of computational intelligence in

games in chapter 1. Chapter 2 will introduce a set of working delimiting properties

of the term “strategy games” based on its historical connotations and common con-

ventions used in games attributed to this genre. Chapter 3 and 4 will provide the

reader with a list of related research divided into frameworks to measure the player’s

experience (chapter 3) in general, and techniques specific to the problem of generating

game content or artificial decision making (chapter 4). Chapter 5 will introduce the

main contribution of this thesis: the strategy games description language (SGDL), a

domain specific language to express the game mechanics of strategy games as laid out

in chapter 2. Chapter 6 will then present some examples how SGDL may be set in

practice by modelling some simple example games. The chapters 7, 8, and 9 will shift

the focus to the automated generation of game rules of strategy games. Chapter 7

starts by introducing the agent framework used to play strategy games expressed in

SGDL. Chapter 8 will provide the reader with a series of game quality measures used to

determine the quality of entertainment certain strategy game mechanics would provide.

Both, simulated gameplay and quality measures, are ultimately connected in chapter 9

in a series of experiments to demonstrate the capabilities of SGDL in the generation

approach, presenting the results in chapter 10. The thesis concludes in chapter 11

with the discussion of the results, the potential of the approach, its shortcomings, and

potential future directions of research.

i

0. OVERVIEW

ii

Chapter 1

Introduction

During my years as a full time researcher I engaged in a lot of conversations about why

we (as individuals) do research in games. I guess for me it is that “I always had a passion

for games”. In fact I heard this answer from many colleagues, and apparently it got so

over used by many of our MSc students that a senior colleague in my research group

got seriously upset about it one year. But there is some truth to it: I remember my

10th birthday, when I was so fascinated about computer games that I decided to study

computer science and do “something” with computer games for a living. The reason

was simple: I had played through all the games I owned at that time, the internet as

a source for new games wasn’t available yet, and with my little pocket money I wasn’t

able to buy more games. Instead, I dreamt of making my own games, or even better:

a system that would create games of my taste.

It would be far-fetched to say that I already foresaw the research described in the

following chapters, but this little anecdote shall serve as a small scale allegory of what

challenges exist today in the games industry. In the home computer era, the early

1980s, published games were normally novel in a sense that they presented new game-

play ideas. Over the following decades games with similar elements formed genres, e.g.

platform games or adventures, each of them with rising and falling popularity. Overall,

the popularity of “gaming” has seen an enormous increase in the last twenty years.

The question why is wide enough for another dissertation, and I can only speculate.

However, what we could observe was a rapid technological development of hardware

components such as central processors, graphics hardware, or gaming systems. Over

the years more platforms became available: gaming consoles, hand-held devices, mo-

1

1. INTRODUCTION

bile phones, and personal computers - perpetuating generations of games. And each

generation of games tried to utilise the capabilities of the newest hardware generation

available at maximal level. Until the early 2000s most game companies focused on im-

proving the graphical quality of their games in terms of technical features, e.g. screen

resolutions, number of polygons, or shader effects. On the other hand, the number of

people interested in computer games increased massively in recent years. A blog post

titled Transformation of the Industry in the Electronic Arts Spielkultur1 blog (1) pre-

sented data, that in the year 2000 worldwide aprox. 200 million people were considered

as “gamers”, while their numbers climbed to 1.2 billion in the year 2012. Although

these numbers are the result of Electronic Arts’ internal market research, and can’t be

externally verified, they do seem believable. The German Trade Association of Interac-

tive Entertainment Software (BIU) reports an increase of market volume between 2010

and 2011 by 3.5% to 1.99 billion Euro for Germany alone (2), based on a representative

survey of 25,000 individuals. These numbers already illustrate that games are becoming

the mainstream medium of the 21st century.

With more people playing computer- and video games, a larger potential market

volume, and more diverse preferences due to the number of players, the industry faced

a competition for the favour of the players, i.e. the paying customers. The appeal of

a game to a wider range of players directly correlates with the game’s financial suc-

cess. While the ground-breaking technological advances were the strongest diversifying

criterion in the 1990s, most games published in the early 2000s had reached a certain

industry standard in audio-visual quality. Today it is very rare that a professionally

published game has technical deficiencies or outdated graphics, in a sense that it uses

obsolete technologies. However, differentiation is still possible, and some titles seen as

more technologically advanced than others. However, this does not include special art

styles, e.g. abstract or cartoon-like, which are nowadays chosen deliberately. The stan-

dardisation of hard- and software systems played an important role in this process, e.g.

application interfaces such as DirectX or OpenGL removed the necessity to implement

special cases for a specific graphics card or sound processor in every game. Although

the development of technology never stopped, technical advancements seemed to stag-

nate between generations of games in the past ten years. Game series like FIFA Soccer

illustrate this very well: the graphical advancements compared to the direct predecessor

1Freely translated: “culture of play”

2

of a game are rather cosmetic. Naturally, these observations are very subjective, but

the development cycles of the mentioned application interfaces support this impression:

until version 9, DirectX major versions were published in an annual cycle. The first

version of revision 9 was released in 2002, the next major version 10 was published in

2006, and version 11 in 20091. Although minor releases and updates were published

in-between, this indicates a consolidation in game technology throughout the past ten

years. In this process developers shifted their focus to the content of a game. The word

content here refers to all aspects of a game that affect gameplay but are not the game

engine itself. This definition includes such aspects as terrain, maps, levels, stories, dia-

logue, quests, characters, etc. (3). Players expected a certain standard in game quality

and more “value” in return for their purchase. In other words, players asked for games

that had more levels, more stories, more characters, etc. A diversification also took

place in the preferred game length (the time needed to finish a game): some players

ask for a very long game, others prefer a short but intense experience. Nevertheless,

the amount of content put in a game can be directly translated into man hours, as

it takes more time to create more 3D-models or write more dialogue lines. The cost

of computer games production has therefore increased drastically in the past years.

Although it is hard to find reliable data on production costs, budgets between 10–40

million US Dollars for larger productions seem likely (4). Major productions such as

Grand Theft Auto IV or Star Wars: The Old Republic even reported budgets of 100

million resp. 200 million US Dollars (5, 6). It can be said that budgets of the video

game industry compete with those of major Hollywood film productions. But it should

be added though, that on the other end of the budget scale are a multitude of small

projects as well, realised by firms specialised on niche- or innovative games. But despite

the number of games by smaller firms, financially successful examples such as Minecraft

remain an exception. These firms are often confronted with the problem of reaching

the industry standard with a small budget. They often rely on market shares that are

not dominated by titles by the major publishers, or include innovative game elements

into their games as a unique selling point. Of course, other factors like non-existing

marketing budgets play a significant role as well. But overall, analogously to “alterna-

tive films”, a so called “Indie Game Scene”2 enjoys a rising popularity (7). Ultimately,

1All release dates are taken from http://en.wikipedia.org/wiki/DirectX
2from being “independent” from external investors

3

http://en.wikipedia.org/wiki/DirectX

1. INTRODUCTION

both market segments are confronted with the challenge of efficiently creating content.

It seems therefore natural, that ideas which were already part of the earliest games

recently regained some interest — but for different reasons: the technology of the

1980s did not permit game designers to put a large quantity of pre-designed game

content into their games, as that would require more data to be stored on the game’s

cartridge or floppy disc. The storage capacities of floppy discs, cassettes, cartridges, and

RAM restricted the use of pre-designed game content to a minimum. Instead, game

developers resorted to a different solution, the algorithmic creation of game content

while the player was playing the game. Parts were created at the time they were

needed. One of the earliest and prominent examples from 1984 was the space trading

game Elite, in which the player had to fly from solar system to solar system and trade

different goods or succeed in piracy and military missions. Whenever the player entered

a new solar system, the program generated the available cargo and its prices at that

very moment. This provided the illusion that the game simultaneously simulated all of

the 2000 solar systems which were part of the game. Although today’s technology lifted

these restrictions, content generation algorithms regained some interest due to increased

demand for game content described in the previous paragraphs. Game developers are

looking for more efficient ways to create game content than manual design.

1.1 Computational Intelligence in Games

From an academic point of view, I would like to direct the reader’s attention to an

academic field which gained some importance in the past years, the computational in-

telligence in games (CIG) community. It is, besides game analysis (or game studies)

on the humanist side and game design research, one of the columns forming games

research. The field of CIG forms a link between games and classical computer science,

such as software engineering, artificial intelligence research, machine learning, or algo-

rithmic theory — just to name a few. I will discuss a multitude of applications related

to my thesis in chapter 4. Coming back to the problem of content generation, part of the

research published in the CIG community is within the sub-field of procedural content

generation (PCG) which addresses the algorithmic generation of game content. Game

content normally refers to the previously stated aspects of gameplay (e.g. weapons,

textures, levels, or stories) and may — to distinguish PCG from other fields of research

4

1.1 Computational Intelligence in Games

— exclude any aspect connected to agent behaviour. It might be argued though, that

generating behavioural policies might be considered PCG in some contexts. One par-

ticular approach to PCG which has gained traction in recent years is the search-based

paradigm, where evolutionary algorithms or other stochastic optimisation algorithms

are used to search spaces of game content for content artefacts that satisfy gameplay

criteria (3). In search-based PCG, two of the main concerns are how this content is

represented and how it is evaluated (the fitness function). The key to effective content

generation is largely to find a combination of representation and evaluation such that

the search mechanism quickly zooms in on regions of interesting, suitable, and diverse

content. The major challenge in designing a fitness function is therefore to define what

is interesting to the player. The field of PCG is therefore closely related to another

CIG field, the discipline of player experience modelling (8, 9). There exist many theo-

ries describing what makes a game “fun” which originate from different disciplines and

which were created independently in many cases. While they are useful for high-level

(manual) game design, algorithmic creation of game content requires quantitative mod-

els. Empirical research created several models in the past decade (10), some of them

will be used and presented throughout this thesis in chapter 3.

This thesis addresses a particular problem of search-based PCG, the procedural

generation of game rules. Game rules define how things “work” in a game, how objects

interact, which interaction possibilities the players have, and how to win the game

etc. With the previously described players’ demand for more game content, game

genres being well established, and budgets in the millions, publishers often reduce their

financial risk by publishing successors of already established games and brands – relying

on game ideas that have been proven to produce financially successful games. Like

Hollywood “blockbusters”, these games do not need to be uninteresting by default, but

one can often read the demand for new game ideas in community boards or media. The

previously mentioned indie game scene can be seen as a symptom of this trend. Deterred

by major publishers’ product development strategies, small firms or individuals often

try to finance their projects with their own capital to retain full creative control. With

lesser financial risks involved, game developers have the freedom of taking larger risks

by implementing innovative game mechanics which eventually only appeal to a small

audience; equivalent to a smaller return of investment.

5

1. INTRODUCTION

The genre I used as an application of procedural rule generation in this thesis is

strategy games. Games that fall under this definition are titles such as Civilization,

Starcraft, or Battle Isle. In this genre of games, the player often takes the role of a

commander, general, or leader in general, facing challenges such as warfare, economic

simulation, or diplomacy. The term “strategy games” will be better defined in section 2.

I chose to work with this genre because - coming back to my opening anecdote - these

were and are my favourite genre of games. But besides personal preference, these games

provide an excellent application for various algorithms. It could be argued that they are

probably the most complex games published so far, in a sense of how much information

a player must consider for his next action. The complexity of strategy games provides

a good challenge for procedural content generation techniques and agent design1 alike.

And to my knowledge no commercially available games use the dynamic generation of

rules so far. In chapter 4 I will also discuss the academic projects with other game

genres that have been proposed so far.

I structured this thesis as follows: in chapter 2 I will refine the definition of “strat-

egy game” which will be used throughout this thesis. I will also discuss aspects of the

historical context of strategy games. Chapters 3 and 4 will present relevant and related

techniques, that have been published so far. The main part of this thesis will start

with the presentation of the Strategy Games Description Language framework in sec-

tions 5 and 6, followed by the general gameplaying part of the framework in chapter 7.

The framework was used in several experiments to measure the quality of strategy game

mechanics. The applications and findings will be presented in chapters 8, 9, and 10.

The thesis will conclude with an outlook of possible research directions based on the

findings so far in chapter 11.

Although this thesis covers my own work, over the last three years at the ITU

Copenhagen, many parts have been created and published in collaborations with other

researchers. I will therefore shift the narrative point-of-view to the academic form of

“we” in the following chapters.

1agents that can act as an ally or enemy. In game contexts these are often called “bots”.

6

1.2 Published papers

1.2 Published papers

Much of the work presented in this thesis has previously been published as peer-reviewed

papers in conferences and other venues. The following is a list of the papers I published

during my PhD, and which the thesis is partly based on:

1. Mahlmann, Tobias and Togelius, Julian and Yannakakis, Georgios N., Towards

Procedural Strategy Game Generation: Evolving Complementary Unit

Types, In Applications of Evolutionary Computation, 2011, pages 93–102, Springer

Verlag

2. Mahlmann, Tobias and Togelius, Julian and Yannakakis, Georgios N., Modelling

and evaluation of complex scenarios with the Strategy Game Descrip-

tion Language, In Proceedings of the Conference on Computational Intelligence

and Games (CIG), 2011

3. Mahlmann, Tobias and Togelius, Julian and Yannakakis, Georgios N., Spicing

up map generation, In Proceedings of the 2012 European conference on Appli-

cations of Evolutionary Computation, 2012, EvoApplications’12, pages 224–233,

Springer Verlag

4. Nielsen, Jon Lau and Fedder Jensen, Benjamin and Mahlmann, Tobias and To-

gelius, Julian and Yannakakis, Georgios N., AI for General Strategy Game

Playing, In IEEE Handbook of Digital Games, 2012, Manuscript submitted for

review

5. Mahlmann, Tobias and Togelius, Julian and Yannakakis, Georgios N., Evolving

Game Mechanics For Strategy Games, In Transactions on Computational

Intelligence and AI in Games, 2013, Manuscript submitted for review

7

1. INTRODUCTION

Note that the thesis provides more details on almost all aspects of the work presented

in these papers. Additionally, I have contributed to the following papers, which are

not included in the thesis:

1. Mahlmann, Tobias and Drachen, Anders and Canossa, Alessandro and Togelius,

Julian and Yannakakis, Georgios N., Predicting Player Behavior in Tomb

Raider: Underworld, In Proceedings of the IEEE Conference on Computational

Intelligence and Games (CIG), 2010, pages 178–185

2. Salge, Christoph and Mahlmann, Tobias, Relevant Information as a For-

malised Approach to Evaluate Game Mechanics, In Proceedings of the

Conference on Computational Intelligence and Games (CIG), 2010

3. Mahlmann, Tobias and Togelius, J. and Yannakakis, Georgios N., Evolving

Card Sets Towards Balancing Dominion, In IEEE World Congress on Com-

putational Intelligence (WCCI), 2012

4. Font, José M. and Mahlmann, Tobias and Manrique, Daniel and Togelius, Ju-

lian, A card game description language, In Proceedings of the 2013 European

conference on Applications of Evolutionary Computation, 2013, Manuscript sub-

mitted for review

8

Chapter 2

Strategy Games

Before designing a modelling language for strategy games it seems beneficial to define

what “strategy games” actually are. The boundaries between genres seem blurry, and

no formal definition is known to the authors. We will therefore make an excursion

into the field of media science and history to elicit a working definition of the genre of

strategy games to have a clearer perspective on modelling requirements. This chapter

will present a short history of the term “strategy” and its various meanings, continue

with a brief overview of the history of strategy games as a medium, and conclude with

a definition of a (computer) strategy game which we will work with throughout this

thesis.

Strategy games have been used as a field of experiments by several publications

before. It seems that they are a viable application for agent designs (11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21). The majority of the cited sources presents different techniques

to use in a bot for the popular real-time strategy game Starcraft, among them Bayesian

networks or potential fields. But also technical aspects such as network latency (22)

or the effect of cheating (23) have been researched. Commonly, experiments are con-

ducted using a commercially available game or a test-bed created specifically for that

experiment, and the authors claim that the experiment sufficiently represents the whole

genre of “strategy games”. Yet, publications in the field of computer science do not

narrow the term and establish its boundaries. It seems therefore necessary establish a

viable definition of the term “strategy game” for our research.

The word “strategy” is derived from the Greek word strathgìc (strategós) for (the)

general. A similar meaning comes from strathgeÐa which may be translated into the

9

2. STRATEGY GAMES

“art of commanding”. In other words, it stands for the systematic planning of achieving

a certain (militaristic) goal. An early example of the definition of strategy games can

be found in Harold Murray’s book about The history of Chess:

... [Chess] must be classed as a game of war. Two players direct a conflict

between two armies of equal strength upon a field of battle, circumscribed

in extent, and offering no advantage of ground to either side (24)

About four decades later, Roberts et al. extended this definition observing that the

role of the two “armies” is quite complex, and the game actually models a complex

social system (25). Roberts writes based on the work of Murray:

The role structure of the two “armies” is quite complex. Both the struc-

ture and the terminology of such a game of strategy may offer clues to the

nature of the interactive system it represents. Pieces are called “men”; they

capture or kill, they attack or defend, they race, and so on.

Roberts hypothesises further, that a social system can only be modelled as a game if

it is complex enough. In return “simple societies should not possess games of strategy

and should resist borrowing them.”

Strategy Games in Culture and Media If we consider Huizinga’s definition of

a game, described in his book Homo Ludens (26), the word “strategy” seems directly

opposed to Huizinga’s definition of “play” at first:

Summing up the formal characteristic of play, we might call it a free

activity [...] It is an activity connected with no material interest, and no

profit can be gained by it.

Rolf Nohr found this paradox in his disquisition on the series of papers “Strategie

spielen” (to play strategy) (27). He concluded that the affinity between “strategy” and

“play” becomes only visible when “strategy” is considered a “certain form of thinking”

(ibid., p. 7). Strategic thinking is the prerequisite for strategic acting, which in return

considers all options possible and defines a goal to achieve. In practice this rarely

happens, and only a portion of the options available are considered. Some options seem

intuitively more promising than others for human players (that this a hard problem for

artificial players will be discussed in chapter 7 and section 11.5). One article discussing

this aspect from a systems theory (the interdisciplinary study of systems in general)

point of view was published by Niklas Luhmann (28) in 1969. There, humans take

10

decisions by the means of contextualisation (setting the decision in context with his own

experience and knowledge) and reducing the complexity of a complex system through

“Wertsetzung” (assigning of values). A human, says Luhmann, is incapable of making

decisions “wertfrei” (without any values), otherwise it would be random selection. The

paradigm of “considering all options” is therefore a pure theoretical construct.

But following the theoretical possibility of considering all options, a strategy re-

quires information about all elements of a system that are relevant for a decision, and

also a model of how these elements interact. Models don’t have to be purely virtual,

but can utilise plans, maps, data charts, miniature models etc. which can be used to

simulate actions; strategy games can provide the possibility space for such simulated

actions. Acting within the strategic action space, following Nohr, resembles the concept

of schemas in cognitive psychology: the models build from predetermined knowledge

and subjective experiences work as schemas for decision making. The difference with

games is that they not only serve as a space for simulated actions but instead also

can generate experiences themselves, and the simulation itself becomes the center of

attention.

Strategy and Emotions It also seems that the term of “strategy” was transformed

throughout history. Speaking about strategic thinking already implies the existence of

a certain rationality. Removing any emotional components from decision making is in

fact an achievement of the long term process of affect control and self limitation. Elias

names this skill in his study “Prozeß der Zivilisation” (29) (Process of Civilisation)

the improvement of “Langsicht”. Langsicht is a composition of the German words

lang, meaning “long” or “far”, and Sicht (view). A non-literal translation would be

the English word “foresight”. Elias used this term for the description of behaviours of

the European population, and described it as the skill of predicting the consequences

of one’s own actions by evaluating the links within a causal chain. Antonio Damasio

argued (30), that emotions play a critical role in decision making and can’t be separated.

The lack of complete rationality however is important when designing parts of a strategy

games other than its mechanics, i.e. the audio-visual context and its narrative play an

important role in how decisions are made.

Strategy in Modern Mathematical Game Theory Another transformation of

the word “strategy” took place in the middle of the 20th century when John von Neu-

mann and Oskar Morgenstern published their book Theory of Games and Economic

Behaviour (31) (and its preceding papers), what is credited today as the foundation

11

2. STRATEGY GAMES

of modern mathematical game theory. They use the term “utility” for a quantitative

measurable variable that each player wants to gain in a game. Although players are

supposed to act “rationally”, and maximise that variable, the authors observe that

“there exists [...] no satisfactory treatment of the question of rational behaviour” and

further: “The chief reason for this lies, no doubt, in the failure to develop and apply

suitable mathematical methods to the problem; [...] the notion of rationality is not

at all formulated in an unambiguous way. [...] the significant relationships are much

more complicated than the popular and ‘philosophical’ use of the word ‘rational’ in-

dicates” (ibid. p.9). If we consider several players in a game system, and that each

player controls a certain set of variables, and the principles of how each player con-

trols his variables are unknown to the other players, so is a qualitative “solution” of

the maximisation problem impossible. Instead, each player develops a plan of how to

react in the game in each possible situation. That plan is called a “strategy” (ibid.

p 79). Neumann and Morgenstern do not cover any militaristic topics. Instead their

framework is supposed to solve economic games with a clear distribution of information

between players and finite predetermined rules. However, the models they describe are

a method of reducing the complexity of a system and allow decision making in a finite

action space. The strategies described by von Neumann and Morgenstern were a great

influence on the Wargames of the 1950s. We will return to these games in section 2.1.

Governmentality and Simulations The equalisation of the two terms “strategy

games” and “wargames” does not seem in step with the common definition of strategy

games. A look into the genre “strategy” in shopping catalogues of any games reseller

reveals titles like “Sim City” or “Railroad Tycoon”. A reason might be, that the term

“strategy” went from its militaristic context through the process of universalisation and

popularisation, making its way into almost every aspect of our daily lives: a marketing

strategy or a conflict avoidance strategy is detached from a military context where

troops are sent into battle. Instead, it refers to goal-oriented acting considering all

options available (again: there is a discrepancy with the term “all” between theory and

practice). Nohr (32) uses Foucault’s term “governmentality” to unify games that model

militaristic, economic, or political processes. The term of “governmentality” is today

associated with Michel Foucault who defined it as the “conduct of conduct” (33), what

could be interpreted as the “art of governing”; with governing not being restricted to

a political context, but also including a sociological or economical context, e.g. the

term could refer to leadership of a state, or the leadership of a family. Both economic

simulations and wargames require the player to constantly monitor the game context

12

2.1 The History of Strategy Games

and adjust variables to improve his position or prevent the loss of the game. This

self-adjustment of the player within a control loop connects to Foucault’s term of self-

imposed repression; meaning that the player accepts (or tries to find) the values the

game imposes as optimal and tries to adapt his actions to achieve those values. Nohr

discusses this in regard to Link’s theories of normalism (34) and uses Sim City as

the main example. Link’s normalism describes the mechanism of defining “what is

normal” based on the statistical analysis of actual data of a population (as opposed

to the normative; the pre-defined norm). Furthermore, subjects of a population -

aware of the norm - now trend towards the “normal value” and in return affect the

analysis. Ramón Reichert (35) also connects strategy games (here: government-games)

to Foucault and discusses that these games have in common that, while they offer several

degrees of freedom for players, they impose a particular master narrative. Knowledge is

presented as scientific or canonical knowledge. Reichert discusses the Civilization series

as an example, where “democracy is the most efficient form of ruling” (ibid. p. 199).

It may also be noted that Reichert points out that government games normally have

in common that the player is not visually represented within the game world. This is

a detail which distinguishes strategy games from most other game genres.

2.1 The History of Strategy Games

The reenactment of war and military conflicts is not a phenomenon that came with

digital media. Computer strategy games are the latest link in a chain of media trans-

formations, starting with the earliest documented games in the late 18th century. It

might be even argued further, that make-believe-games in which wooden sticks are

treated as swords may have been played earlier; imitating real weapons of that time.

Conversely, some game productions involve military personnel as consultants, or are

(co-)financed by the military. Marcus Power showed in 2007 the increasing ties between

the American Military and the digital games industry with the example of America’s

Army (36), a first person shooter developed through army funding with potential re-

cruits as an intended audience.

Coming back to strategy games, a detailed overview of their history has been pub-

lished by Sebastian Deterding in 2008. His paper “Wohnzimmerkriege” (37) (living

room wars) outlines several significant epochs which we will briefly summarise in the

following paragraphs.

13

2. STRATEGY GAMES

The early days (1780-1824) One of the first notable transformations from abstract

games (such as Chess) into a more realistic medium is the “Kriegspiel” developed by

the German mathematician Johan C. L. Hellwig and published in 1870 (refined in

1903) (38). That game is exemplary of several games published during that time. The

game portrays an antagonistic militaristic situation where two players take the role of

generals. Each general commands an army in the form of several game pieces. Each

game piece represents a different type of unit (cavalry, infantry, artillery, etc.) and the

game board consist of different wooden pieces that represent rivers, cities, armaments,

etc. The game’s manual supplies the players with all necessary rules to move and

attack enemy units. A more detailed description of the Kriegspiel can be found with

Nohr (32). The intention of the game was to precisely model the mechanics of war, not

to create an enjoyable game. Deterding (37) summarises the key elements as follows:

• Modular terrain The game board could be re-arranged, using different tiles such

as plains, rivers, or cities.

• Game Master A person who acts as a bookkeeper and referee.

• Non-Determinism Some actions include non-deterministic elements which affect

the outcome. These actions require a device for randomisation, e.g. dice.

• Parallelism Moving several game pieces per turn

• Unit properties As opposed to Chess, game pieces have properties such as health

or moving points.

• Spatiality Tools to measure moving- and shooting ranges, e.g. rulers or markers

• Limited intelligence Both players and the game master have their own level of

information, realised by three different tables in separate rooms.

Wargames become civilised (1880-1932) Both Nohr (32) and Deterding (37)

compare Hellwig’s Kriegspiel to H.G. Wells’ game “Little Wars” from 1913, and point

out that the latter is often seen as the birth of the “civil strategy game”. While Hellwig’s

game has the clear intention to serve as a tool for the education of young cadets, Wells’

intention was to provide a form of social interaction (32, 37). Nohr also points out

that this is already more aligned with Huzinga’s definition of play. Deterding iterates

further over a few popular games from that time, and points out that (miniature) war

gaming might have become successful due to the introduction of another phenomenon

of that time: the tin soldier. These little miniature figures became affordable in the late

18th century due to industrialisation and mass production. And with the militarisation

of the bourgeoisie they become a popular children’s toy. Otto Büsch wrote about the

“social militarisation” in Prussian-Germany through conscription (39). A more recent

14

2.1 The History of Strategy Games

reflection of the original material by Büsch has been published by Wilson in 2000 (40).

Rebirth of a genre (1952) No significant development of the genre of strategy

games during the second world war is known. But this, says Deterding, is probably

more due to the lack of proper documentation of “trivial” items than the lack of people

playing games. He defines the year 1952 as the next significant year in the history of

strategy games: Charles S. Roberts created his own war board game, and published it

with his company Avalon Game Company (later Avalon Hill) under the name “Tactics”.

It set up two hypothetical countries, with typical post-World War II armies, engaging

in war. The game was professionally produced and distributed through the Stackpole

Company (which already had a reputation as a publisher of books on military affairs). It

was the first modern commercial wargame as we know them (41). The game introduces,

among other things, hex shaped tiles as a board layout which were imported from

professional military simulations (42, 116). Also, tin solders were replaced with markers

made of paper.

The Golden Age (1952-1980) After several successful publications of games by

Avalon Hill (and others) followed what Deterding (37, 92) and Dunningham (41) call

the “golden age”. They especially focus on the decade between 1970 and 1980 when

several game publishers spawned, and the first strategy game convention took place:

the Origin. The convention still exists today and had 10,030 and 11,332 visitors in 2009

resp. 2012 (43).

The digital exodus (1980-1985) On the peak of the popularity, in 1980, the main

strategy games magazine Strategy & Tactics (founded in 1966) sold 37,000 copies, and

the number of sold (paper1) strategy games reached 2.2 Million. But in 1980 also

the first computer strategy games were published. According to Deterding it is not

possible to name “the” first strategy game, as the term was used incoherently. Some of

the games published were board-/computer game hybrids, using the computer as the

game master for a board game, or did not include a computer opponent. But it is safe

to say that the introduction of 8-bit home computer sparked a boom of video games.

Nearly every game idea was realised as an electronic version to see if it was feasible as

an electronic medium. Naturally, with strategy games being one of the most popular

genre of games, many of the published computer games were adaptations of existing

game ideas. The transition also included themes: world war II and cold war games

1Paper refers here to strategy board games where board and game pieces were cut out of paper.

15

2. STRATEGY GAMES

were the dominant setting.

Franchise worlds (1983-1987) In the late 1980s computer strategy games were

influenced by another phenomenon, originating in the 1970s: fictional, but coherent

and complete, worlds that were inter-medially connected. The success of Tolkien’s Lord

of the Rings (44) established a popular franchise, and many adaptations in different

media were created. Tolkien’s lore was combined with the game Chainmail: Rules

for Medieval Miniatures and published as Dungeons & Dragons in 1974. Dungeons &

Dragons is probably the most prominent so called “pen and paper” roleplaying game.

It is a “make believe game” supported by a conceptual framework that defines which

attributes objects and characters in the game world have, and how they may interact.

Each participant plays a character who is commonly tracked on a sheet of paper, hence

the name “pen and paper”. The idea of a group of characters adventuring together

resembles Tolkien’s figure of “the fellowship”. Similar examples can be found with Star

Trek, Star Wars, etc. Two notable examples from the 1980s which Deterding presents

are Warhammer and Battletech. Both systems were originally tabletop games, the

modern variant of Hellwig’s and Well’s wargames. Each player has control over an

army of (physical) miniature figures, and gameplay takes place in a model landscape.

The first game system can be seen as a dark version of the fantasy world created by

Tolkien, with all their orcs and elves. The latter models a universe were humans pilot

huge battle robots in tactical combat. Both systems have in common, beside their

popularity, that they focus significantly on the individual units. Most units used have

their own abilities, lore, and the paper version of their description consists of multiple

pages. Their re-mediation as computer games made these invisible and convenient

to handle. It may be noted that Warhammer and Battletech are the only successful

franchises that combined the medium of computer games with other game mediums.

The next notable example is Blizzard’s World of Warcraft more than twenty years

later; again combining a computer game with board-,card-, and roleplaying games.

Simulations (1974-1990) Like Nohr (32), Deterding makes the observation that

strategy games are hard to distinguish from simulation games. Both genres focus on

algorithmic modelling (of complex systems). They also have a common ancestry in

board games. In the 1970s several non-militaristic but strategic board games were

published. A notable game from 1974 is 1829 which inspired Sid Meier to publish

his popular computer game Railroad Tycoon in 1990. The creator of 1829, Francis

Thresham, also published the game Civilization in 1980 which in return was adapted

16

2.2 Strategy Games: The Delimitation of the Genre

as a computer game by Sid Meier as Sid Meier’s Civilization in 1991. To avoid further

legal disputes, Sid Meier’s company MicroProse bought the publisher of the two board

games Hartland Trefoil in November 1997. Ultimately, it should be added, that in

2001 another board game Civilization was published. This time as an adaptation of

the computer game. One could argue, that this could be called “Re-Remediation”, the

transformation back to the original medium.

Trading card games (1993-2002) The last transition took place in 1993 and the

following years, when the roleplaying games publisher Wizard’s of the Coast published

their trading card game Magic: The Gathering. The antagonistic situation of two play-

ers now took place in the form of two decks of different playing cards, each representing

a resource or unit. The clou: not every copy of the game included the same cards.

Players were supposed to buy “booster packs” that included new cards. It was im-

possible to peek inside the pack and it was unknown which cards a player would gain.

This aspect, and the principle that more powerful cards were printed in fewer copies,

created a trading scene. Powerful decks were created through the strategical collection

and trading of cards.

2.2 Strategy Games: The Delimitation of the Genre

The brief recapitulation of the history of strategy games compiled by Sebastian Deter-

ding (37) in section 2.1 ends with the question of why strategy games are so popular,

regardless of their medium. His hypothesis is, that strategy can only exist in virtual

space - the simulation - because there exists no natural situation where a person can

have perfect information about a situation. It rather requires an interface to reduce the

complexity of a situation to make it comprehensible and differentiable (ibid., p.108). It

further requires a network of helpers and tools to create the visualisation of the situation

and break down global strategic decisions to orders for the single individual. In other

words, a game is the only space where perfect information and perfect control can exist

to support strategic thinking and therefore strategy games are so appealing. Deterding

also discusses the “remediation” of strategy games into computer games. In conjunction

with McLuhan’s dictum (45) that “the content of every medium is another medium”,

Deterding concludes that the first computer strategy games were simply strategy board

games copied into computer games. The term “remediation” here refers to the process

of developing into a new - independent - medium. Although the process of remediation

does not seem relevant to our cause, the discourse cites a list of differences between

17

2. STRATEGY GAMES

computer- and board strategy games, published by Chris Chrawford (46) in 1981. This

helps as another step for our definition of strategy games:

• Network play Communications Technology creates the possibility for two players

to play with/against each other even when they are not physically at the same

location.

• Realtime Given enough processing power, the computer can simulate the discrete

steps of a game so quickly, that the game progresses in realtime in the perception

of the human player.

• Solitaire games Implementing rules that make a computer program behave like a

human player would, at least within the game space, creates the opportunity to

play for a single individual alone.

• Limited information The program may choose to not reveal every detail about

the gameworld to the player. Eliminating the necessity of auxiliary tools like

different tables or blinds.

• Cloaking the internals. The mechanics and calculations, e.g. the dice rolls, are

hidden in a layer of code; invisible to the player.

In this chapter we investigated several sources regarding strategy games, discussed

their historical roots and media implications. Computer strategy games have their roots

in the war-, board-, and role-playing-games that were developed in the 20th century.

Besides the theoretical similarities, there are practical crossovers between wargames and

economic simulations. In fact most wargames include simple economic simulations,

most often the accumulation of resources to build more units to ultimately conquer

the enemy. From these sources we elicitated a working set of delimiting properties

of digital strategy games for our work, which was first published in 2012 (47). The

following properties of “strategy games” will delimit the games used in the following

chapters:

• The base for strategic gameplay is a topographic map that defines relations be-

tween objects and space. Positions on the map can be either given in discrete

(tile-based) or real values.

• A player does not incorporate an avatar to interact with the game world. Al-

though some games use a unit/figure to represent the player on the map, the

camera maintains a distant “bird’s eye” position.

• Two modi operandi of time are possible: turn-based or realtime. The latter

includes simultaneous acting of all players, while turn-based makes this optional.

18

2.2 Strategy Games: The Delimitation of the Genre

• The player interacts with the game world through his assets. He can not directly

manipulate the world but use game pieces he “owns” as a medium for his orders. It

could be argued, that by clicking on a unit and then on a target the player actually

manipulates the world, but we consider this rather “user interface interactions”.

The target mouse click merely provokes the unit to shoot; the shot is not fired by

a user avatar. For example, a target mouse click without a selected unit in range

would have no effect. An example for direct manipulation by the player would

be an omnipresent weapon attached to the player’s mouse cursor.

• Objects on the map may have properties. Objects are divided into classes that

define the attributes and abilities.

• The interaction between objects is defined implicitly through their actions and

abilities.

• The computer per se only acts as a bookkeeper (or gamemaster), making the me-

chanics of the game invisible. The game itself is a framework of rules. Computer

controlled opponents are treated separately.

• The game requires at least two factions. Factions compete over the same or

different goals. Each faction is controlled by a player. The definition of player

here is transparent: it may be another local, network based, or artificial player.

• Each faction may have a different view on the game state. While there necessarily

exists a well defined canonical state of the game at any time, the game rules may

define what information may be revealed to a player. This feature is normally

called limited information (as opposed to full information)

So ultimately the genre of strategy games might be better called “government games”,

as the line between genres seems blurred. However, we will use a more restricting

definition. This is simply for practical reasons to reduce the number of possible games

modelled in our framework. To maintain a reasonable complexity of our experiments,

we also introduced the following limitations to the term “strategy game”:

• Game mechanics can be divided into two categories, primary and secondary. The

primary game mechanic is warfare. All actions that are immediately connected

to destroying, hindering, or damaging objects are considered part of this.

• Secondary game mechanics such as economic or political processes act as sup-

port. Commonly economic mechanics are tailored towards unit production (i.e.

resource gathering), and political processes evolve around diplomacy. Sometimes

19

2. STRATEGY GAMES

secondary mechanics can become crucial to the game play and help decide who

wins.

Comparison between Sim City and Civilization To conclude this chapter, we

would like to compare the two previously mentioned examples, Civilization (CIV) and

Sim City (SC) in regard of the definition stated above:

1. Both CIV and SC feature a map which is segmented into tiles. Both games

have different topologies: CIV maps are two dimensional, SC maps have different

height levels (introduced in SC 2000).

2. In both games the player is not represented in the form of an avatar. Some CIV

games represent the player’s keep in form of a throne room in the nation’s capital,

but it is never located on the map directly. SC has a similar mechanism with the

difference that the mayor’s mansion can be placed on the map directly. However,

both game series do not feature a player’s avatar.

3. CIV games are turn-based (multiplayer plays a special role with simultaneous

turns though), while SC games progress in realtime

4. In CIV players have to use units to change the world. The best example are the

player’s worker units which are needed to create various types of tile improve-

ments, e.g. roads or farms. In SC the player can directly manipulate the world:

either using terraforming tools and placing structures directly with his mouse

cursor.

5. Both games feature maps with objects. These objects are grouped into classes by

attributes and abilities CIV features units and cities, objects in SC are structures

grouped by function.

6. Each unit type in CIV possesses several abilities, e.g. to move around, build,

or shoot. In SC buildings have, with a few exceptions, no abilities they can

invoke. Instead the game features a macro model of several potential fields. For

example, crime is not presented as agents committing actual crimes, but instead

police stations influence the potential field of average crime. This field can be

directly visualised in the game’s main view. However, buildings do not direct act

or interact.

7. Both game series hide the actual calculations of the next game state: for example,

when two units engage in combat the result is calculated and just presented as

20

2.2 Strategy Games: The Delimitation of the Genre

an animation to the player. In SC the complete computational model is hidden

from the player, and only represented as a few indicators; either directly in the

game world (houses displaying another graphical state when being abandoned),

or in the form of diagrams.

8. CIV features a variable number of factions, SC has no concept of factions or

teams. Therefore the point of a different perspective does apply to CIV, but not

to SC.

9. Warfare is not a part of the SC series. It is however the primary mechanic of the

CIV series.

10. Economics are the primary mechanic of SC, but only play an ancillary role in

CIV.

Although both game series have similarities, we consider only CIV a game which suits

our definition. Sim City falls outside of our categorisation because of points 4, 6, and 8.

The main separation however is based on points 9 and 10.

21

2. STRATEGY GAMES

22

Chapter 3

Related Theoretical Frameworks

Our work puts the object of investigation - strategy games - into the context of com-

putational intelligence in games research. Our main objective is to create strategy

games and evaluate them in terms of how interesting and appealing they are to human

players. It therefore seems relevant to introduce what definitions of “interesting” or

“entertaining” in terms of games have been published. In the following, we will present

what research has been published in regards of gameplay experience: the idea of an

interesting game, i.e. what makes a game enjoyable. The research presented herein

consists of conceptual frameworks and related method of measurements. The chapter

is divided into quantitative and qualitative methods though some methods could be

categorised as both.

Chapter 4 will then present related work that is connected to the aspect of content

generation. Not all of the methods presented here directly relate to our work on strategy

games. However, we discuss them to set our work in context with other approaches.

Especially the work regarding the emotional state of the player is not applied in this

thesis, but we see this as relevant if one would add the aspect of adaptivity to the

SGDL framework. We consider it future work to consider it players’ preferences in the

generation of strategy game mechanics.

3.1 Modelling Player Experience: Qualitative Methods

The term “fun” is highly debated within the academic community, and consensus seems

to be that is a rather ambiguous concept and is oversimplifying the experience or

motivation to play a game. The reason why somebody plays a game, and which game

he plays is very diverse. This section tries to approach the question why and how people

23

3. RELATED THEORETICAL FRAMEWORKS

play games, and what theories can be used to identify answers to both questions from

an academic angle.

We start with the research done by Lazzaro et al. They argue that people play

games to change or structure their internal experience (48) and feel emotions that are

unrelated to their daily life. While we will discuss the definitions of emotions further

in section 3.1.5, Lazzaro et al. identified four key features that may unlock emotions in

players while interacting with a game. They point out further, that the requirements

for entertainment software differ in some key aspects from software for production

purposes (e.g. office suites or CAD). Lazarro therefore propose the distinction between

User experience and Player experience. While the former also partially applies to games

(e.g. a game shouldn’t contain bugs or present confusing input methods), the latter

does not apply to production software; although gamification in serious software is

another uptrending topic.

The studies conducted by Lazzaro et al. indicate that people prefer titles which

provide at least 3 out of 4 features. They have identified about 30 emotions that are

connected to four quadrants, whereas different emotions arise from different mechanics

and playstyles. Moreover, interesting games let the player move in between these

quadrants to create a diverse experience:

• Hard fun meaning challenge and overcoming problems in the game. This usually

generates either frustration or fiero (Italian for “personal triumph”).

• Easy fun refers to the enjoyment of intrigue and curiosity. Absorption may

lead to wonder, awe and mystery. The absence of easy fun will make the player

disengage with the game very easily because it is too frustrating.

• Serious fun (previously named Altered states). Players reported as a motivation

that games could change “how they feel inside”. Meaning that by clearing a level

they could clear their mind, or that a game made them avoid boredom. The lack

of serious fun usually makes a game feel like “a waste of time”.

• The people factor this summarises the social interactions players have in a

multiplayer game. Coming from social experiences like cooperation or competi-

tion, players would report emotions like amusement, schadenfreude or nache. The

people factor can also motivate people to play who normally state that they are

“non-players”, also it motivates people to play games they don’t like.

Malone (49) instead proposes three categories: challenge, fantasy, and curiosity. For

“challenge” he mainly refers to goals and that the simpler the game is, the more obvious

the goal should be. On the other hand, the more complex a game is, the better

structured the goal should be. Players should also be able to tell if they are getting closer

24

3.1 Modelling Player Experience: Qualitative Methods

to the goal or not. He further categorises uncertain outcome and hidden information

under challenge; points that are also picked up by Juul (50). For “fantasy” Malone

divides between extrinsic and intrinsic fantasy. Extrinsic fantasy could be seen as an

early idea of “gamification” (applying game principles to non-game context), where a

game is laid on top of an existing curriculum. The abstract game is just a metaphor for

a conflict or value in the original system, e.g. children must answer basic math questions

to advance on a “Snakes & Ladders” (51) game board. Intrinsic fantasy on the other

hand refers to the concept that the game task also depends on the fantasy as a setting.

Malone gives as an example the simulation of running a lemonade stand: the game task

(calculating the right price, i.e. making mathematical decisions) is embedded in the

system. Malone adds that intrinsic fantasies are more interesting, as they are generally

less abstract. For the last category “curiosity”, Malone distinguishes between sensory-

and cognitive-curiosity. Sensory curiosity refers to the concept of changing patterns

in light and sound that create different stimuli. Cognitive curiosity seems inspired

by Shannon’s concept of information (52): at the beginning of the game, the player’s

information about the game’s world and mechanics are incomplete. One motivation to

play the game is to overcome that inconsistency.

Measuring how much a player enjoys a game is more elusive than measuring more

traditional performance metrics, such as time on a task or number of errors, which have

been successfully applied to productivity applications (53). A measuring framework has

to solve the issue of comparability, i.e. how to compare the “fun” of killing a horde of

virtual aliens in a first-person-shooter to the experience of playing a puzzle game (e.g.

SpaceChem(54)). Furthermore, it has been tested that the idea of “fun” differs between

different playing styles (55), and even more generally between men and women. Also the

cultural aspect plays a role (56). So far a canonical and clear taxonomy and vocabulary

to describe a gaming experience has not been finalised, and it is debatable if this is

actually possible. We will try to list some approaches that have been made to define

and articulate the general experience with but not limited to computer games.

3.1.1 Self-reported data

A widely used approach to capture the experience with a game (or a computer program

in general) is to let players express their own thoughts and preferences about the ex-

perience while or after playing a game. Viable methods in game experience evaluation

are (among others) questionnaires or focus groups, i.e. supervised playing. There have

been a variety of questionnaires proposed for different aspects of the gaming experience.

A well-established survey method is the “game experience questionnaire” (GEQ). It has

25

3. RELATED THEORETICAL FRAMEWORKS

been tested to reliably measure the seven dimensions sensory and imaginative immer-

sion, tension, competence, flow, negative affect, positive affect, and challenge (57).

An important point has been raised by Yannakakis and Hallam in 2011: even though

self-reported data offers a direct approach to affect detection, they are prone to self-

deception, intrusiveness and subjectiveness. The used scheme has a significant impact

on the validity of the reported data. In their paper, Yannakakis and Hallam compare

two popular schemes for self-reported data: rating (or scaling) and preferences. In both

schemes participants are asked a range of specific questions regarding the experience

with or of something. The majority of psychometric user studies using the method of

rating, where participants are asked to rate their preferences on a scale, the commonly

used Likert Scale (58). They point out that when commonly averaging data over all

participants the subjectivity of the rating is eliminated. Furthermore, the ordering of

the possible answer and the internal cognitive processes, cultural background, temper-

ament, and interests is relevant. Yannakakis and Hallam compare the use of scales

in self-reports to preference modelling (59), where participants are asked to express

pairwise preferences, e.g. “I prefer A over B”. This would eliminate inconsistencies like

rating two features as high that contradict each other. Yannakakis and Hallam present

a variety of user case studies and a statistical analytic comparison of those. They con-

clude that rating questionnaires appear more susceptible to order-of-play effects than

preference questionnaires. Furthermore, they found it interesting that reported scales

and preferences did not match exactly, suspecting that the order-of-play is the most

significant factor.

3.1.2 Requirements elicitation

Computer games research in general is a fairly young field compared to other disciplines

of computer science, including software engineering. It therefore seems beneficial to look

into other fields, where extensive research on usability and effectiveness of software has

already been conducted. In a games context “effectiveness” could be translated as “en-

joyability” if we declare that the purpose of a game is to entertain the player. We think

that playtesting games can be compared with user testing non-entertainment software.

Methods that have been established through and from the software engineering com-

munity should therefore apply. Naturally, artistic elements such as game art, sound, or

narratives play a minor role in non-entertainment software. However, methods such as

“requirements elicitation” should apply. Requirements elicitation describes a number

of methods to gather the information about the required features of a system from end

users, customers, or stakeholders. The task is non-trivial as one can never be sure if all

26

3.1 Modelling Player Experience: Qualitative Methods

the required information is compiled, and the term “elicitation” is commonly used in

literature (as opposed to “gathering”), because simply asking the customer would not

be sufficient. In the context of games an argument would be, that designing a good

game requires background knowledge in game design, psychology, or narration – to just

name a few – besides the actual technical skills to realise it. The open question “What

would be a fun game?” will probably produce very broad answers.

The paper by Nuseibeh and Easterbrook (60) from 2000 presents several aspects

for the creation of software requirements. The term “Requirements” there refers to

technical requirements of software, e.g. data modelling, behavioural modelling, or

domain modelling. The authors present a survey about currently used or published

methods, resulting in a “roadmap” and an overview about the field of Requirements

Engineering in the year 2000. This roadmap is later picked up up by Cheng and

Atlee (61) in 2007, whop present an updated taxonomy of papers published in the

field. One of the conclusions drawn in that paper is that the Requirements Engineering

community would greatly benefit from industrial organisations providing data of “real

world” projects to the community. This problem exists in the computational intelligence

games community as well. Quantitative analysis of large scale industry-strength data

such as player metrics has been proven to be a valuable tool in player modelling or

strategy extraction.

Ethnographic studies Ethnography is a technique coming from social and cultural

sciences to explore the life, ways, and values of a cultural group. An ethnographic

study tries to describe the point of view of that group, as objective and independent

from the researcher as possible. The idea is that the researcher imposes no bias on the

data he collected. In practice however, this can only be guaranteed to a certain extent.

Although more a technique than a specific field, the term “ethnographic research”

has become associated in the 20th century with cultural anthropology, when western

researchers travelled into non-western cultures. Among others, two publications are

often credited as the basis of the field: Argonauts Of The Western Pacific (62) or

Deep Play: Notes on the Balinese Cockfight (63), both describing rather exotic tales

from a western point of view of that time. Ethnographic studies in the field of software

engineering research are normally concerned with the software creation process, i.e. how

teams work, what resources are need, which external factors may hinder the process etc.

The paper by Lethbridge et al. from 2005 (64) presents a good overview of techniques

used by ethnographers. The authors present a taxonomy divided in three “degrees” (or

categories), each one requiring a different grade of involvement of the persons studied.

27

3. RELATED THEORETICAL FRAMEWORKS

The three grades also differ (according to Lethbridge et al.) in the three dimensions:

reliability, flexibility, and the use of resources. Discussing the listed techniques in

detail here in regard of the game production process seems rather uninteresting, as

the differences are probably too few. Instead, ethnographic studies in games research

focus on the quality of the end product, or – to be more precise – the users, i.e.

how do people play games? Communities of online role-playing games such as World

of Warcraft are an often used research environment, studying behaviours of players

and their interaction with the game and with each other (65). Other studies tried to

compare the players of eSport tournaments with traditional professional sports (66).

Ethnographic studies in the field of computational intelligence in games are unknown to

the authors of this paper, but since agent design is an important discipline in our field,

it seems interesting to create an agent for a specific simulation game after observing

the actual environment. In an article by Robinson et al. from 2007 the authors try to

generalise a number of observations and challenges the authors made and faced with

studies - focussed on software engineering - done in the previous decade. Especially

the relationship between the researcher and the subject being researched seemed to be

a challenge. Speaking about one of their studies, the authors state: “In the object

technology study our experience was slightly different. Here, our participants were

not people but contemporaneous artefacts. However some of the artefacts represented

events or movements that we had lived through ourselves, e.g. notices for a workshop

or conference that one or other of us had attended, a journal paper describing the

relationship between expert systems and object-based systems which one or other of

us had read with a different purpose many years ago”. This exemplifies the problem

any ethnographers face: as the common ethnographic view is that the researcher comes

from a different culture than the culture being point of the study, it is easy for him to

consider everything as “strange” and preserve an objective point of view. On the other

hand, a culture or field that is highly specialised such as software engineering requires

more background knowledge than an informal theoretical framework to understand

“what is going on”. Transferred to games this relates to game researchers being gamers

themselves; or game makers making the games which they want to play, often limiting

the target audience of their game (unconsciously) to a “core audience”. The term

(hard)core here stands in direct opposite of a more recent stream in game making:

causal games for a broader audience (67). To our knowledge, this effect has never been

researched. On the contrary some game companies use this advertising slogan: “By

gamers, for gamers”1.

1Slogan of Interplay Entertainment (http://www.interplay.com)

28

http://www.interplay.com

3.1 Modelling Player Experience: Qualitative Methods

3.1.3 Personality

Lindley and Seenersten propose a framework (68) based on attention theory which mod-

els interaction with a game as schemas. A schema is understood as a cognitive structure

that distributes cognitive resources (such as attention) to motor outputs of game play

in response to the ongoing perception of an unfolding game (game play pattern), input

pattern, or story pattern etc. The framework further specifies that schemas are organ-

ised in a hierarchy, mirroring the structure of goals and tasks set for a player. The high

level goal might be finishing the game, what might be decomposed into finishing each

level, which requires the task of killing each monster in the level and so on. Lindley and

Seenersten hypothesise that schemas are a fundamental structure for the motivation

to play. Their method to recognise patterns or schemas seems to be a pure manual

task: recording and analysing logging keystrokes, mouse movements, gaze tracking, and

think-aloud protocols under and in controlled test environments/levels. The framework

was initially proposed to detect the correlations between designed features and achieve-

ment emotions/behaviours of players, but Lindley and Seenersten further propose that

schemas could be used to identify players’ personalities and preferences. They argue

that the automatic detection of schemas and schema execution may indicate which

form of satisfaction particular players are seeking (69). These experiments are mainly

described in (70). Together with Nacke, Lindley and Seenersten describe the experi-

ments to measure emotional response to certain game play elements. They examined

the correlations between external recorded data, e.g. physical measurements (such as

described in section 3.2.2) and through questionnaires about experiences. The results

indicate a correlation between emotional responses and game play features, especially

visual attention patterns.

3.1.4 Flow

According to a theory in the field of psychology, flow is a mental state where a person

is fully immersed in a task and its success. It is assumed, that this state is reached

when the limbic system, controlling a person’s emotions, and the neocortex, the part

of the brain that is linked to conciousness and cognition are fully synced. Physically,

this state of adaptation of the mind and a person’s environment can by quantified and

verified by a measurement of the heart rate variability. The theory of “flow” has been

developed by Mihály Cśıkszentmihályi (71) in 1991, starting the research in the 1960s.

The psychological theory has several main prerequisites for a person to reach the state

of flow with a task when:

29

3. RELATED THEORETICAL FRAMEWORKS

1. The task has clearly defined goals, and

(a) The task provides immediate response about the person’s performance

(b) The task may be autotelic, i.e. the task may be to perform the task

2. The requirements of the task matches the person’s skills and abilities. The task

must not be too overburdening nor underchallenging (as illustrated in figure 3.1)

Too challenging

Too easy

Flow

Abilities

R
eq

ui
re

m
en

ts

Figure 3.1: Illustration of the concept of flow, the relation between a task’s requirements

and the abilities of its performer.

The experience of flow is characterised as:

• having complete control over a task

• feeling a task becoming effortless

• loosing the sense of time

The concept of “flow”, how to achieve it, and what its benefits are have been studied in

regards of tasks in other fields before, e.g. online consumer behaviour (72) or Human-

Computer-Interaction (73). It has been has been applied to games by Sweetser and

Wyeth in 2005 (74), which features a comparative study of two games in regards of sup-

porting the requirements for a flow experience by the player. Game experts were asked

to rate the games Warcraft III and Lords of EverQuest in regard of several statements

such as “games should increase player skills at an appropriate pace as players progress

through the game” on a numeric scale between zero and five. The authors concluded

that some criteria apply more to other genres of games than the two (strategy) games

which were part of the experiment. For example, the sense of having control was iden-

tified as being more important for roleplaying games, or being immersed applied more

to first person shooters than strategy games. The authors also identified shortcomings

30

3.1 Modelling Player Experience: Qualitative Methods

of the methodology, stating that some criteria could not be efficiently rated through

game experts but require actual playtesting by players with different skill levels and

familiarity with the genre, e.g. learning curves are difficult to describe retrospectively

by people who already mastered a game. The initial study was recently verified by

Sweetser et al. in a new publication (75), reporting that most of the original find-

ings were confirmed with new expanded heuristics. An overlap between immersion and

concentration was clarified in the new paper, as the boundaries in the original study

were rather blurry. Overall, Sweetser et al. propose a detailed heuristic for measuring

“GameFlow” in real-time strategy games, taking into account typical features such as

races, campaigns and missions, or gameplay concepts such as “upgrading units”.

Koster (76) also discusses the effect of flow, but states that flow doesn’t necessarily

require a cognitive understanding of the process by the player (ibid. p. 98). Instead

flow is created through successful pattern recognition. Pattern recognition could mean

deciphering of the correct sequence of actions to jump through a certain part of a level,

the correct combination of puzzle pieces, or the right order of moves in a strategy game.

For every new pattern the brain recognises, it releases a jolt - so Koster says. If the

flow of new patterns slows, then the player would feel boredom. Koster also argues,

that flow doesn’t equal fun, as “flow” is not a prerequisite of fun. Vice versa, Koster

argues that there are many activities which create “flow” but are not necessarily seen

as fun, e.g. meditation. Instead, says Koster, games are fun as long as the player can

learn something (new patterns) from it.

3.1.5 Emotional State

Picard et al.(77) proposed five dimensions of emotions to model the affective state of a

student. The model is used to validate and control the actions of a companion agent for

learning. They start with discussing several frameworks of emotions from psychology

which propose several different numbers of possible emotions (78, 79, 80). Picard et al.

build a five-dimensional model, that they cross with the concept of (de-)constructive

learning, resulting in a two-dimensional model. This model describes the emotional

state of the learner and its positive/negative effect on the learning process (similar to

Csikszentmihalyi’s Flow theory (section 3.1.4).

In their further work Picard et al. differentiate that learners have needs which are

different from other users and that how the user feels is relevant (81). While this at

first sounds trivial, it is imperative that designers (of any human-computer interaction)

should consider that the user’s emotions not only contribute to irrational behaviour

but also play a role in rational decision making (82). Picard et al. back this up by a

31

3. RELATED THEORETICAL FRAMEWORKS

short survey of studies about the impact of negative emotions. the authors continue

with the assumption that interactions which satisfy “experimental emotional needs”

are exclusive to human-human interactions, but could also be fulfilled by non-humans

(i.e. pets or computer systems). Their example continues with an interrogation system

for patients. There, patients gave a positive response about the computer system

because they felt that it lowered the barrier between the doctor’s status and their own

“working class” status. It was given that the computer was less “judgemental”. It

seems that their regular doctors may be more condescending, and that patients felt

less uncomfortable with a neutral computer. Following the paper by Picard and Klein,

there are two issues mentioned that may also be relevant to game designers: (1) that

experts may see through the user interface and realise the underlying system, therefore

the system may fail to satisfy their needs (i.e. a game where mechanics are too obvious

may become unappealing to a skilled player) and (2) the issue of privacy where a user

is not aware of the adaptation capabilities of the system and therefore shares more

details. In terms of games this might be a lesser issue, as adaptive systems are usually

marketed as a unique selling point (e.g. the AI director in Left 4 dead1).

Picard and Klein continue by discussing the issue of systems which imitate human

behaviour but fail on the subtleties (also known as the uncanny valley by Masahiro

Mori (83)). This problem can ruin the interaction and therefore “building machines that

are as much like people as possible” may not be the primary goal, and people should

have control over the sensing process, as people tend to develop a defensive stance

when they feel manipulated. Following Picard and Klein, it may also be concluded

that different personalities may prefer different responses from a machine (84).

Similar work was done by Ravaja et al. (85) where the correlation of different kinds

of games (e.g. the view from which the game is played, naturalness of the game,

amount of violence) and self-reported emotions were examined. They conclude, that to

compare the “goodness” of different games, it is not to sufficient to compare them on a

basis of one single emotion, but one should instead look at emotional patterns (profiles)

associated games. Furthermore, a game does not generally have to generate positive

emotions to be “good”. Thrilling or horror games ideally generate the emotions of fear

and anger to be rated as “good”, yet these emotions are generally not categorised as

positive emotions. Ravaja et al. conclude that a game at best stimulates a strong

emotional reaction.

1http://www.l4d.com

32

http://www.l4d.com

3.1 Modelling Player Experience: Qualitative Methods

3.1.6 Immersion

Immersion related to games is often used as a synonym for involvement or engagement

with a game. Sweetser and Wyeth (74) put immersion on the same level as the flow

experience: “deep but effortless involvement”, which makes it difficult to distinguish

from other concepts. Ermi and Mäyrä (86) propose a three layer model: sensory-,

challenge-based-, and imaginative-immersion. Sensory refers to the perceptual impact

on the user, challenge-based refer to the cognitive and motor skills of the user, and imag-

inative refers to the immersion within the virtual world, the richness of the narrative

structure of the game.

Brown and Cairns (87) show that players, when talking about immersion, refer to

the involvement within the game. Furthermore, Brown and Cairns describe a model

of three stages of immersion: engagement, engrossment and total immersion (or pres-

ence). Each stage also seemed to be only achievable after a certain time: Engagement

here refers to the simple fact that the player is willing to spend time with the game,

Engrossment, the second level, raises the game to an experience that affects the emo-

tional state of the player. The third level, total-immersion was described as a “cut-off”

from reality in all matters.

Calleja (88) proposes the term “incorporation” instead of immersion since the first

has been widely used with conflicting meanings, diminishing its analytical value (ibid.

p. 4). Incorporation however, says Calleja, is the “internalization of spatial and other

frames of involvement“. Overall, he discusses six aspects of involvement.

1. Tactical involvement decision making, planning, opportunity costs, the plea-

sure of decoding

2. Performative involvement movement, plan execution, “button pressing”

3. Affective Involvement cognitive, emotional and kinaesthetic feedback loop,

emotional arousal, cognitive challenge, optimal level of arousal

4. Shared involvement interaction with the world and other agents, human agents

allow a wider range of communication

5. Narrative Involvement: designed narrative, personal (i.e. emerging) narrative,

“The lived experience is stored into players’ memory”

6. Spatial involvement locating one’s self within a wider game area, internalize

immediate location

33

3. RELATED THEORETICAL FRAMEWORKS

Calleja picks up the aspect of spatial immersion especially in regards of strategy games

(ibid. p. 140):

[players can] get absorbed in the cognitive challenge of a strategy game

or stroll leisurely in aesthetically appealing landscapes. [. . .] the appeal

of beautifully rendered environments can be particularly powerful when

contrasted with unattractive everyday surroundings

Like many other game types, strategy games can be played both competitively and

casually. However, not all released titles support both modes.

3.2 Modelling Player Experience: Quantitative Methods

The previous section presented models and theoretical frameworks that have been pro-

posed to model player experience in a more explorative way. This section presents data

collection and survey methods, that have been used or proposed in experiments or a

professional context to measure the effects of games on humans while they are playing.

Some methods originate from other fields, others are only applicable to games and are

therefore considered as “player experience measurements”. This section presents both

methods that use player centric measurements and methods which rely on in-game

data.

3.2.1 Interest

The question of whatever a game is “interesting” is a very broad question. When

asked, players may refer to the graphics or the narrative structure. Yannakakis and

Hallam proposed (89) that an “interesting game” may rather refer to behaviour of non-

player character agents in the game. They formalised three components that make a

predator/prey-game interesting and showed in an experiment that their definition was

very robust against different playing styles in a limited context. Yannakakis and Hallam

used a modified version of the classic arcade game Pac Man. The general game mechanic

remained the same: the Pac Man agent has to “eat” all the pills within a maze while

avoiding the ghosts who are trying to chase him. If Pac Man eats a “Power Pill”, the

ghosts become edible for a short time and the Predator-Prey roles become reversed. But

instead of focussing on Pac Man, i.e. the player, Yannakakis and Hallam put the ghosts

and their strategy to chase Pac Man in focus. The Pac Man agent was controlled by a

variety of static strategies, but the ghost time was controlled by a controller consisting

of a neural network which evolved through neuro-evolution. While they also evolved

34

3.2 Modelling Player Experience: Quantitative Methods

controllers for optimal behaviour, in terms of efficiently chasing the Pac Man agent,

did they focused on evolving controllers which would provide “interesting” behaviour.

The following three components were used to evaluate a controller’s performance:

• Challenge (T). Meaning that escaping the predators may not be too hard or too

easy, expressed in the difference between the average and maximum times steps

necessary to kill the prey:

T = [1− (E{tk}/max{tk})]p1 (3.1)

where E{tk} is the average number needed to kill the prey over N games; max{tk}
is the maximum number of steps required over N games; and p1 is a weighting

parameter.

• Diversity (S). The strategies of the predators to kill the prey should vary. This

can be expressed as

S = (s2/s2
max)p2 (3.2)

where s2 is the sample variance of tk over N games; s2
max is the maximum value

of s2 over N games. p2 is a weighting factor.

• Aggressiveness (H). Predators should use the whole game space instead of just

following the prey. This can be formalized as the entropy of the cell visits (given

that the game has a discrete space):

H = −
∑
i

vi
V
log
(vi
V

)
(3.3)

where V is the total number of visits of all visited cells (i.e. V =
∑
i
vi) and p3 is

a weighting factor. This can be normalized to [0,1] with:

Hn = (H/logV)p3 (3.4)

All three components were then combined into a linear combination:

I =
γT + δS + εE{Hn}

γ + δ + ε
(3.5)

where I is the interest value of the game and γ, δ, ε are weight parameters.

Although only a varied version of Pac Man with different playing styles was used,

Yannakakis and Hallam propose that this function could be used for any predator/prey

game following their definition. Although the calculations are specific to Prey-Pradator

35

3. RELATED THEORETICAL FRAMEWORKS

games, the characteristics Challenge, Diversity, and Aggressiveness measures could be

applied to strategy game bots as well. It is debatable if it the definition is sufficient to

categorise the whole (strategy) game as “interesting”. Compared to the games used by

Yannakakis and Hallam, strategy games include more and more complex aspects which

contribute to the player experience. Generally, the factors “Challenge”, “Diversity”

, and ”Aggressiveness” seem to be applicable, but in a different context. Challenge

in strategy games does not rise from spatial navigation or reaction time. Instead, a

strategy game gains challenge from its rule complexity or other aspects. Diversity, the

number of possible strategies to win a game, is a highly relevant aspect to strategy

games. This normally creates significant value to replay a game. Aggressiveness seems

less relevant, and would need a further definition. There are a variety of roles and

agents taking part in a strategy game so that this seems inapplicable on such a high

level.

3.2.2 Physiological measures

Asking players about their emotions and their experience with a game has the problem

that participants, knowing that their answer is recorded, will sometimes give the answer

they think the investigator would like to hear. This can also happen without the

participant even realising it. Ratings may be affected by the participants cognition

than resembling what is actually occurring (90). Instead, following the work that has

been done in the Human Factors research community (91), the usage of physiological

signals as an approximator of fun has gained some interest.

• Galvanic skin response (GSR) GSR measures the conductivity of the skin.

It can be best measured at specific sweat glands (the eccrine sweat glands) using

two electrodes. Those sweat glands, located in the palms of the hand or the sole

of the feet, change the conductance of the skin without the necessity that the

participant is actually sweating, as the sweat might not reach the surface. GSR

is suspected to be linearly correlated to arousal and cognitive activity (92).

• Cardiovascular Measures These measures include blood pressure, heart rate,

heart rate variability and signals gathered by an electrocardiogram (EKG).

• Respiratory Measures. This refers to the breathing frequency and the volume

of air exchanged through the lungs (depth of breath). Emotional arousal directly

affects these measures.

• Electromyography Refers to the electronic activity that occurs when muscle

are contracted. Attached to the face and jaw, these can be used to recognize

movement of “frown muscles” (over the brow) and “smile muscles” (over the

36

3.2 Modelling Player Experience: Quantitative Methods

cheek).

Mandryk et al. (93) showed that physiological signals can be used as indicators

for the evaluation of co-located, collaborative play, and that the results will correlate

with the reported experience of the player. Tognetti et al. also found that certain

physiological measures (e.g. GSR) correlate with the reported player preference, while

other (Heart rate or temperature) don’t. Although physiological features can be seen

as an objective measurement and are (for most computer games) not task dependent,

as the energy to play a game doesn’t really depend on the game being played, should

qualitative measurements such as curiosity and flow should rather be taken from the

analysis of the data gained of the player interaction from within the game (player

metrics).

Yannakakis and Hallam (94) used the physical-activity game Bug Smasher to re-

search if physiological measures correlate with preferences over game-variants. More-

over they used preference learning (neuroevolution) to construct entertainment models

and feature selection to isolate the significant signals.

While this is an established technique to gather player feedback, it would be inter-

esting to see if this actually applies to a player playing strategy games as they are not

a physical activity, and seldom contain the element of horror or suspense. In fact, no

strategy game with these characteristics is known to the authors. Nevertheless, strat-

egy games certainly evoke emotions: succeeding in executing a certain strategy may

trigger the emotions of joy and triumph. It is questionable though if these emotions

occur in a sufficient frequency compared to e.g. a first person shooter.

3.2.3 Tension in Board Games

In 2006 Iida et al. proposed a fitness measurement based on outcome uncertainty.

They used the game Synchronized Hex as a case study. They approximate the chance

of winning for each player through a number of self-play rollouts similar to a Monte

Carlo Tree Search. We will use the approach prsented here in our fitness presented in

section 8.2.

Once the probability distribution P = (p1, p2, ..., pn) of the chances of winning for

n players is obtained, we can use the standard information theory formula (52) for

outcome uncertainty (entropy)

H(P) = −
n∑
i

pilog(pi) (3.6)

with n being the total number of possible outcomes and pi the probability of outcome

37

3. RELATED THEORETICAL FRAMEWORKS

i. Here, this means n being the number of players (plus potentially the possibility of a

draw) and pi the probability of player i winning the game resp. the game ending in a

draw.

Analogously, the outcome function for a given position G in the game can be for-

mulated as an entropy function:

U(G) = −
k∑
i

pilog(pi) (3.7)

where k is the number of possible outcomes (player one wins, player 2 wins, draw etc.),

and pi is the probability that the outcome of the game will be i.

It is unknown to the authors if this concept was ever formalised into a fitness

functions for games. We present our own interpretation in section 8.2.

3.2.4 Measures from Combinatorial Games

In 2008 Browne (95) published extensive work on fitness functions for combinatorial

board games for two players, e.g. Chess, Checkers or Go. Explicitly noteworthy here is

that these measurements use automatic playthrough, like most of the fitness functions

used within the SGDL framework (will be presented in chapter 8). Artificial agents

play games expressed in Browne’s Ludi language (discussed in section 4.4.4) while

different indicators are tracked. Browne created aesthetic measures based on Birkohoff’s

theorem (96)

M = f

(
O

C

)
(3.8)

whereas the aesthetic measure of an object M depends on the order O (simplicity,

symmetry etc.) and its complexity C (number of components, level of detail etc.).

Browne’s proposed measurements in a brief overview are:

• Complexity Taken from Pell’s METAGAME generator (97), complexity refers

to number of move options for each piece on the board plus the number of winning

conditions.

• Movement Type Accounts for the existence of different movement types in the

game out of a list of possible types, observed from several existing games (e.g.

add a piece, remove, capture etc.)

• Goal Type Similar to Movement Types, a game could have one or various goals

out of a list of goal types observed in existing games.

• Branching Factor Refers to the number of move choices per turn for a particular

player.

38

3.2 Modelling Player Experience: Quantitative Methods

• Response Time Time it takes a computer agent to formulate a move. It is

assumed that if it takes an agent longer to calculate the best move, it will also

be harder for a human player.

• Move Effort The number of moves a player has to plan ahead to make an

adequate move. It is proportional to the information a player must process each

turn.

• Search Penetration Indicates if the game tree of lookahead moves for a player

is rather deep and narrow or rather shallow and wide.

• Clarity (Variance) This indicates how clear for a human player it is to dif-

ferentiate between promising and unpromising moves. In terms of a MCTS (see

Monte-Carlo Tree Search in section 4.3.1.2) agent this is the variance of the evo-

lutions of the moves available.

• Clarity (Narrowness) Like the various measurement, this relates to the game’s

clarity. It determines if normally a small clear choices stand out as the promising

moves each turn.

• Convergence Approximates the trend of the number of possible moves available

to a player rather to de- or increase throughout the game.

• Uncertainty Refers to the same concept as Iida’s work (as in section 3.2.3) but

instead of rollouts of self-play Browne used a custom function that takes the lead

graph of the players into account.

• Drama (Average / Maximum) The number of moves the eventual winner

spends in a trailing position

• Permanence Indicator if a player can immediately reverse or recover from a

negative effect that his opponent just played.

• Lead Change Number of times the leading player changes throughout the game.

We will use this measure in chapter 8.3.

• Stability The fluctuations of players’ evaluation (scores) throughout the game.

• Coolness Indicates if players are forced to make a move that is not beneficial to

them.

• Decisive Threshold The point in the game where it is nearly clear which player

will win this game. The term “threshold” refers to a reasonable degree of confi-

dence.

• Decisiveness The measurement of how fast a game will end once the decisive

threshold is reached.

• Depth (Discrepancy) The variance of how many moves a player has to plan

ahead.

39

3. RELATED THEORETICAL FRAMEWORKS

• Board Coverage Considering board games, this measurement indicates if the

action normally takes place on certain parts of the game board (e.g. middle) or

is widely spread over the whole board.

• Momentum Tendency of players to defend a leading position with their conse-

quent moves.

• Correction Tendency of a player’s score, that has gained the lead, to continue

downwards (sometimes referred to as “rubber-band effect” (98)).

• Control Degree of which the leading player can limit the moves of the trailing

player.

• Foulup factor The chance of a player making a serious mistake by overlooking

a move.

• Puzzle Quality An estimator of difficulty for a puzzle. It is measured on the

counter-intuitiveness of puzzle, i.e. a puzzle that requires a first move that is

different to what 999 of 1000 players propose (99).

Browne further proposed some fitness functions that rely on the game’s outcome

and are essential to detect games with serious flaws, i.e. unplayable games.

• Completion Tendency of a game to end with either a win or loss after a certain

number of moves. Games that fail to reach a conclusive end and continue “forever”

are generally less desirable.

• Balance A game is balanced if all players in each starting position have an equal

chance to win the game.

• Advantage If the starting player is more likely to win the game.

• Drawishness Tendency of a game to end in a draw where no player wins.

• Timeouts Same as Completion but also considers draws as a valid ending.

• Duration Average number of moves necessary to end a game. It is presumed that

the players’ favourite game length is half the maximal game length (maximum

number of moves possible).

• Depth (Skill Level) An indicator of skill differentiation between players is pos-

sible, i.e. a more skilled player that plans more moves ahead than a novice player

should be able to win more likely. Games that rely on pure chance normally fail

at this.

• Selfishness Refers to the concept that a player who only concentrates on the

development of his pieces on the board is able to win the game. If this is the case,

the game normally lacks interaction between the players.

• Obstructive Play Is the opposite of Selfishness: if a player focusses only on

hindering his opponent’s play may win, the game seems less desirable.

40

3.2 Modelling Player Experience: Quantitative Methods

• Resilience Measures if a game may be won by a player that only makes random

moves.

• Puzzle Potential Ability to create puzzles within the game. With “puzzles”

Browne refers here to Thompson’s definition (100) of a puzzle: “what is the best

move?”.

As we pick up some of these measures in a later chapter, the interesting question

arises if all of these listed factors are applicable and/or interesting to strategy games.

Complexity is definitely an important factor and probably their main property. The

number of different game mechanics in strategy games are usually very high, and the

player has to consider several aspects of the game at the same time. The Movement item

seems applicable but very important, it seems evident that different units should have

different movement properties. Goal types heavily depend on the experience intended

by the game designer. Multiplayer games seldom have goals besides the annihilation

of the enemy. Single player campaigns, with a carefully crafted campaign might offer

different goals. The branching factor correlates with the complexity of a game and

is an important factor for the underlying (agent) technology as we will see in a later

chapter. A large branching factor may lead to a larger response time. But turn-based

strategy games usually expect players to accept a certain wait time for the computer

move, therefore a larger response time is simply an inconvenience. The move effort

and game tree properties may imply resp. require a certain pace of a strategy game.

These properties significantly differ between real-time and turn-based strategy games.

The same goes for the clarity measurements: games which require the element of fast

reacting require a larger clarity, while more complexer but time-uncritical game may

require the player to invest more time in planning his next moves. Strategy games have

the tendency of allowing the leading player to increase its move possibilities, while the

possible actions of the losing/defending player decreases. A matching example would

be the concept of “map control”. The player who has more units and key positions on

the map may move his units freely and may have more access to key resources than

the player who practically can only move units within his base. The directly correlates

to Browne’s “control” measure.

The uncertainty measure will be discussed in a later section as well as the drama

indicator.

Permanence may be connected to concept of counter strategy, i.e. for every strat-

egy player or unit type used exists a counter-strategy or counter-unit. Theoretically,

all players oscillate around a power equilibrium which means that the leading player

constantly changes until a decisive threshold is passed. However, quantifying “lead”

41

3. RELATED THEORETICAL FRAMEWORKS

and defining the leading player might not be possible at every given game state. On

the other hand, once the decisive threshold is passed and a winning player is identified,

the following effects could be observed be the authors in the past: competitive games

are often ended by the surrender of the trailing team to escape the frustration. Non-

competitive strategy games are often played until the end to enjoy the game’s effects

and pace, e.g. the explosions of blowing up a base.

The board coverage is usually maximised, allowing more skilled players to utilise

all the objects on the map to their advantage, e.g. resources or choke points. Strategy

games normally have a low “correction” value, and often contain a positive feedback

loop, i.e. it is easier for the leading player to fortify his position. The balance of

a strategy game is essential, and we will cover this aspect in conjunction with the

“Advantage of the starting player” section 8.1.

The measures regarding the game length seem less applicable, as player’s are nor-

mally willing to invest a large amount of time into strategy games. The indicators

regarding player interaction and selfishness are more applicable. If we compare strat-

egy games, especially real-time, from the ’90s with today’s titles, mechanics have greatly

improved. In earlier games so called “wall ins” were actually possible. This describes a

strategy which could not be countered, where a player fortifies his base so much, that

an attacking player was unable to take down any defences.

Most of Browne’s measures seem applicable to our set of games as well. This

is of now surprise as “combinatorial games” or generally board games have a close

relationship to strategy games, as we discussed in chapter 2. Furthermore, Browne

intended to model also classic games such as Chess or Checkers.

3.2.5 Learnability

Schmidhuber (101) describes “fun” as the intrinsic reward of a learning progress an

agent makes. He argues that measuring a model’s improvement to represent a task or

environment can approximate the degree of subjective surprise or fun an agent has.

Data or information in general can be seen as a pattern or regular if it’s compressible,

meaning that there exists a program that predicts the data with actually using a smaller

description (102). Conversely, this means that irregular noise is unpredictable and

boring. If an observer didn’t know a found pattern before, it may be surprising and he

might be able to learn the new pattern. The learning progress then could be measured

and translated into an intrinsic reward.

If an agent has the lifespan t = 1, 2, ..., T we can formulate it’s overall goal as the

42

3.2 Modelling Player Experience: Quantitative Methods

maximization of its utility (103):

u(t) = Eµ

[
T∑

τ=t+1

r(τ)|h(≤ t)

]
(3.9)

whereas r(t) is the (external) reward at the time t, h(t) the ordered triplet [x(t), y(t), r(t)]

the sensor input, action taken and reward at the time t (hence h(≤ t)) is the known

history of inputs, outputs and rewards until time t, and Eµ(·|·) is expectation operator

regarding the unknown distribute µ from a set M . In other words, M reflects what is

currently known about the reactions of the environment.

To maximise this utility an agent may use a predictive model p that reacts to the

interactions of the agent with its environment, this means that the model depends at

every time (1 ≤ t < T) on the observed history h(≤ t) so far.

We can then introduce C(p, h) as the model’s quality measurement. In theory this

measure should take the whole history into account:

Cxry(p, h(≤ t)) =
t∑

τ=1

||pred(p, x(τ))− x(τ)||2

+||pred(p, r(τ))− r(τ)||2

+||pred(p, y(τ))− y(τ)||2

(3.10)

whereas pred is p’s prediction of an event (103). Beside the obvious computational

costs, Cxry doesn’t take the danger of overfitting into account, that just stores the

entire history. Alternatively the principle of the Minimum Description Length should

be applied here. This takes p into account as a compressor (a program or function

that compresses h(≤ t) into a shorter representation) of h(≤ t) so Cl(p, h(≤ t)) can be

called p’s compression performance: the number of bits needed to specify predictors

and deviations. Following Schmidhuber (101), the ultimate limit for Cl(p, h(≤ t))

would be K∗(h(≤ t)), a variant of the Kolmogorov complexity, the shortest program

that computes an output starting with h(≤ t). The fact that K∗(h(≤ t)) can only be

approximated can be translated into behaviours that some patterns simply can’t be

learned and the reward maximizer will therefore refrain from spending too much time

on these.

Since Cl(p, h(≤ t)) does not take computing time into account, Schmidhuber pro-

posed to introduce a runtime dependent component that weights compression over time

consumption:

Clτ (p, h(≤ t)) = Cl(p, h(≤ t)) + logτ(p, h(≤ t)) (3.11)

43

3. RELATED THEORETICAL FRAMEWORKS

basically stating that one bit gained from compression is worth as much as a runtime

reduction factor of 1
2 .

So far this has only taken the external reward, given by the agent’s environment,

into account. To model something that could be seen as creativity, intrinsic motiva-

tion or fun, the reward signal r(t) (according to Schmidhuber) can be split into two

components:

r(t) = g(rext(t), rint(t)) (3.12)

where g simply maps a pair of real values, e.g. g(a, b) = a + b. The interesting part

is the intrinsic reward rint(t) which is provided whenever the quality of the model

improves. In its simplest case, it could be the difference of the prediction capability

(with f(a, b) = a− b):

rint(t+ 1) = f [C(p(t), h(≤ t+ 1)), C(p(t+ 1), h(≤ t+ 1))] (3.13)

It should be further stated, that both models have to be trained on the same data

(h(≤ t)) to make them comparable.

The above described theoretical framework of artificial curiosity hasn’t found much

application to computational intelligence in games yet. To the author’s knowledge

only Togelius and Schmidhuber himself conducted an experiment in automatic game

design (104) where they have taken artificial curiosity account. A potential application

would be, following the idea of meta-learning (105), to let several different agents

play the same game, with the same rules, start setup, and probabilities regarding the

reaction of the environment. Then measure their ability to “learn” the game. The

learning rates could be used as a combined quality measurement of the game itself. A

more unorthodox approach would be to let agents learn the game through the ruleset

itself, i.e. “reading the manual” (106).

Overall, Schmidhuber’s theory, although not directly connected, seems to be a sim-

ilar definition of Koster’s Theory of Fun (76). There, Koster says that a game is fun

as long as the player can learn something new from it. Schmidhuber is less strict, and

can be briefly summarised as “a game is fun if it can be learned”.

3.3 Defining Game Mechanics

Besides the definition of what is an “interesting” or “enjoyable” game, the question

“what are game mechanics?” is central to our approach to procedurally generating

game mechanics. This section therefore presents different approaches and arguments

have been proposed in the past to coin the term “game mechanics”.

44

3.3 Defining Game Mechanics

A good starting point to the definition of game mechanics and game rules might be

the article “Defining Game Mechanics” by Miguel Sicart (107) from 2008. He first gives

a survey over previous approaches and then discusses the definition of game mechanics

as “procedures of actions” as suggested by Avedon (108) and used by Järvinen (109)

using the concept of “Object Oriented Programming”.

The definition of game rules (in differentiation to game mechanics) is a contested

area within game studies, but both Sicart and Järvinen seem to agree, that game

rules refer to the rules applying to the gameworld itself, e.g. gravity in a physical

simulation (Sicart), and that such mechanics are applied through the “gamesystem

itself [. . .] [as] a ruleset procedure in a form of an algorithm” (Järvinen, p. 254). We

interpret this standpoint as that “rules” are the rules encoded into the program while

“mechanics” refers to the gameplay which emerges from these rules. Following Sicart,

Järvinen suggests a classification of game mechanics into primary and secondary game

mechanics (not to be confused with our definition at the end of chapter 2). This

deviates slightly from the definition used by Salen & Zimmermann (110) whereas core

mechanics are “activities that players perform again and again”. Sicart instead suggests

that mechanics should be classified as “directly applied to solving challenges” (primary)

and those that “cannot be used exclusively to solve the main challenges of the game,

but [. . .] can prove of help to reach the end state of the game” (secondary).

Sicart seem to disagree with Järvinen though that game mechanics only seem to

exist “so goals can be achieved”, as otherwise games without goals, e.g. Sim City, would

not have mechanics following that definition. Sicart further states that his classification

is not exhaustive: mechanics that are not related to overcoming the game’s challenge

are not covered by his definition. Taking Koster’s(76) view into account, that a game

should not contain inferior choices, one might argue that in an ideal game there are

no game mechanics that fall out of Sicart’s definition, but psychological research has

shown, that decision makers may be induced to choose a personally inferior choice (111).

Hence inferior choices might be incorporated into the game design by purpose.

3.3.1 Different Layers of Rules

The Game Ontology Project (112) by Mateas et al. differentiates between four top-

level categories, Interface, Rules, Entity Manipulation and Goals, and a large number

of sub-entries; what Aarseth criticises as “less than intuitive” (113). Aarseth instead

suggests dividing the gameplay (as a process) into two different layers: “The semiotic

layer [. . .] is the part of the game that informs the player about the game world and

the game state through visual, auditory, textual and sometimes haptic feedback. The

45

3. RELATED THEORETICAL FRAMEWORKS

mechanical layer [. . .] is the engine that drives the game action, allows the players to

make their moves, and changes the game state.” According to Aarseth, the mechanical

layer also incorporates the mechanics of objects interacting with the world.

Salen and Zimmermann (110) decompose game rules into three layers:

• Implicit Rules

• Constituative Rules

• Operational Rules

Implicit rules Implicit rules in this context mean “unwritten rules” (e.g. players

may not cheat, players shall not overthrow the board or younger players may take

back a foolish move). While those are definitely important to the social aspect of play

and what makes them enjoyable, they are less interesting from a computer science

perspective as they can’t be formalised (otherwise they would become explicit rules)

and are therefore not fungible for any algorithm.

Constituative rules Constituative rules are the underlying meta-model a game is

about. This layer lines up with Sicarts definition of “game rules”. Evolving game rules

instead of mechanics could be called a top-down-approach. Salen and Zimmerman

give the example of Tic-Tac-Toe and 3-to-15 which share the same constituative rules.

We assume that the reader is familiar with the game of Tic-Tac-Toe, and the rules of

3-To-15 can be taken from Rules of Play (110, 128):

1. Two players alternate turns.

2. On your turn, pick a number from 1 to 9.

3. You may not pick a number that has already been picked before by either player.

If you have a set of exactly 3 numbers that sum up to 15, you win.

The explanation of the analogy can be found on the same page: 3-To-15 is a “magic

square puzzle”, where any horizontal, vertical, or diagonal sums up to 15. By playing

a game by the rules of 3-To-15 players actually play a game of Tic-Tac-Toe, say Salen

and Zimmerman.

Operational rules Operational rules conform with what Sicart defines as “game

mechanics”, the actual “written-out” rules that come with the game. They define the

legal moves and how entities within the game may interact.

46

3.4 Summary

3.3.2 Games as Systems

Salen and Zimmermann also see games as a system (110, 49f) and they describe the

parts of the games as “objects” (e.g. chess pieces), “attributes” (e.g. the color of a

piece) and “internal relations” (e.g. a white piece may remove a black piece). This is

actually the common paradigm for object oriented programming and the same idea as

Sicart’s (107). Another point that is raised by Salen and Zimmermann (110, 44) is the

idea of “interpretation of signs”, what is basically the core idea of the field symbolic AI:

the differentiation between a sign (symbol, syntax) and its meaning (semantic). The

argument here is that this is not necessarily pre-defined and is hugely influenced by

the surrounding system (may be the game or even a cultural context). Although this a

very narrow summary of this important topic, it is an important argument to be able

to detach the game’s system (the constituative rules) from the actual implementation

(sometimes called “theming” or “audiovisual presentation”).

Järvinen (109) extends the idea of games being systems and proposes a taxonomy

and library of game mechanics. He defines game mechanics as “verbs” that could be

used to describe the (re-)actions of players within the games. In a more technical

sense, this could be seen as transitions between game states. The problem with this

top-down approach is, like Järvinen states himself, that is not exhaustive and may fail

to classify/categorise unknown game mechanics or nuances of exiting ones. Using verbs

as a representation therefore doesn’t seem to be applicable for evolving game mechanics

through algorithms.

3.4 Summary

This chapter presented a large variety of methods which have been previously proposed

or used to model and measure the experience a person might have while playing a game.

Several frameworks have been proposed to capture and analyse the experience. We have

presented a number of qualitative methods which mainly focus on the emotional state

of the player, and a number of qualitative methods which seem to focus rather on prop-

erties of the game itself rather than the person playing it. However, the collected data

does not stand out alone, but is in return used to infer a player’s emotional state. We

also presented related literature regarding the term “game mechanics” and how game

rules may be formalised. While this chapter mainly covered related theoretical research,

the next chapter will focus on related applied research from the field of computational

intelligence.

47

3. RELATED THEORETICAL FRAMEWORKS

48

Chapter 4

Related computational

intelligence in games research

While the the previous chapter focussed on related work on frameworks regarding cap-

turing the experience of “gaming”, this chapter presents more technical work which is

connected to the process of creating content, machine learning, and previous approaches

to the modelling of game rules.

4.1 Generating Content

We start with techniques and concepts of automatic creation of artefacts through algo-

rithms. The term “artefact” here refers to a resource which is not the program’s code

itself. In the context of computer games the term “content” is used synonymously.

This section presents work that can be categorised as procedural content generation,

but does not cover the generation of game mechanics. Game rule generation is explicitly

discussed in section 4.4.

4.1.1 Search-based procedural content creation

Search algorithms are (as the name states) algorithms which search a solution for a

given problem. The problem is often implicitly defined by a function which determines

how good a solution is in terms of the problem. The task of the algorithm is then

to find the optimum, or at least a solution that is sufficiently good. The space of

potential solutions is often multi-dimensional and commonly referred to as the search

space of potential solutions. There exists a wide variety of different search algorithms

and strategies, a few well known examples are Local Search (114) or Tabu search (115).

49

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

Different search-based algorithms employ different strategies to traverse the search

space in order to find the optimal solution most efficiently.

Coming from the angle of procedural content generation (PCG), Togelius et al. in-

troduced a taxonomy of search-based content generation (SBPCG) in games in 2010 (3).

They defined game content as all aspects of the game that affect gameplay but are not

NPC-behaviour or the game engine itself. Among the examples they give are maps,

levels, weapons, and quests. They propose a taxonomy with five different dimensions:

• Online versus Offline a PCG system can produce new content online (at the

time the game is actually running) or offline (before the game starts).

• Necessary versus Optional this category doesn’t refer to the PCG system

itself but to the content it creates. Togelius et al. define necessary as everything

in a game that is needed to complete the game. Optional content therefore may

be non-functional (although this is an undesirable) while necessary content needs

to be correct.

• Random Seeds versus Parameter Vectors this addresses the problem of

representing PCG content in its compact state (genotype).

• Stochastic versus Deterministic Generation classifies if the generator will

produce the same artefact every time it’s invoked with the same input vector.

• Constructive versus Generate-and-test Togelius et al. compare generators

that create assets and “be done with it” with generators that evaluate and po-

tentially reject a solution.

Especially the last point, the evaluation of the generated content, is essential for a

search strategy. A content generator may iteratively improve a solution (or a whole set

of candidates) until the required quality is reached.

We can also extract the core motivations of employing PCG in games from the same

publication. Togelius et al. enumerate:

• Memory consumption this refers to the game data shipped with a game. Pro-

cedurally generated content generally takes less space until it is “expanded”.

• Expenses of manually creating game content algorithmically generating

game content or variations of it decreases the amount of labour required to create

it.

50

4.1 Generating Content

• Emergence of new types of games if content is created online, and the cre-

ation process is driven by the playing style of a particular player, the game may

change in an unforseen way

• Augmentation of the imagination of the game designer similar to the

emergence of new game types, the PCG system can inspire its creator/user.

Although our work is primarily intended for offline use, it could be theoretically

possible to change a game’s rules while the player is playing it. However, ignoring

the game design implications, this seems impractical due to the long time it takes to

run the evolutionary process; as the framework is clearly on the “generate and test”

side. The SGDL framework, introduced in chapter 5, is “deterministic” since SGDL

trees are always interpreted by the engine in the same way. As the genotype models

game mechanics on a rather verbose level, we argue that SGDL corresponds to the

“parameter vector” side in Togelius’ work. The last dimension, if the generated artefacts

are necessary or optional, depends on if SGDL is use to model all game mechanics or

just parts of it.

4.1.2 Procedural Level Generation

Probably the most explored aspect of procedural content generation is the generation

of “levels”. The term “level” here can be extended to track, stage, map, etc. or more

generalised as “world”. The generation of game worlds (as in: topological structure) is

probably the most common application of procedural content generation in commercial

games, and a fairly well-studied problem. Commercial examples range from galaxies

in the first Elite, to newer games with aspects procedurally generated levels, such as

Diablo III, or games which are heavily based on the procedural generated worlds such

as Minecraft or Dwarf Fortress.

As stated aobve, there have been many projects on procedural level generation.

Examples range from levels for Super Mario Brothers (116) or similar (117), to racing

games tracks (118), first person shooter levels (119), and strategy game maps (120). A

rather abstract approach was presented by Ashlock in 2010: the generation of mazes

using a color-coded grid (121). The player could only traverse cell boundaries that had

colors also adjacent in the chromatic circle.

4.1.3 Interactive Storytelling

A separate - but related to rule generation - field of procedural content generation is

the construction of coherent stories and plots. Even though these approaches do not

51

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

address the generation of game mechanics, they seem interesting as they also address

the aspect of content generation. Unfortunately no work known to the authors has

been done on stories for strategy games, but we believe that the presented approaches

could be adapted to tactical gameplay.

One prominent example is the Façade system, an experimental game published by

Mateas et al. (122) in the early 2000s. Players may interact with the system through the

input of natural language, and affect a story framed as a dinner event with a married

couple. Depending on the input (or lack thereof) of the player, the story may take

different turns and arrive at different endings. The Façade system is generative in the

sense that it mixes and sequences behaviours in sophisticated ways, but it does not

generate the individual behaviours (ibid. p. 4). Instead, a component called the drama

manager picks so called beats from a collection of behaviours tailored to a particular

situation. The choice is based on the current state of all objects and characters in the

game. The drama manager selects new beats from the set of potential beats based on

a “tension” value, ultimately forming an overall story arc.

Another approach was published by Cheong and Young (123). Their computational

model of narrative generation of suspense uses planning algorithms to change the nat-

ural order of events of a story (fabula; all the events in the order they take place)

into a partial ordered sequence, the sjuzhet. The sjuzhet is the narrative order of the

story, may differ from their natural order, or may be just a subset, i.e. a story may be

told in flashbacks or flashforwards, or certain plot elements may be hidden from the

reader resp. viewer. Cheong and Young used a heuristic for sjuzhets based on suspense.

The suspense level of the reader was measured based on a notion articulated by Ger-

rig and Bernardo (124) which sees an audience as problem solvers: an audience feels an

increased measure of suspense as the number of options for the protagonist’s successful

outcome(s) decreases. Therefore the suspense level of the reader can be defined as the

the inverse of the number of planned solutions for the protagonists’ goal.

4.1.4 Cellular automata

Cellular automata are not a technique especially developed for procedural content gen-

eration. They are used to model spatial discrete dynamical systems, where the state of

each cell at the time t+ 1 depends on the state of its neighbouring cells at time t. Cells

can be ordered in different spatial structures (e.g. one dimension line, two dimensional

grid, etc.). Cellular automata were initially developed by Ulam and von Neumann (125)

to model robots that could assemble new copies of themselves. Like conventional finite-

state machines they consist of a set of states and a transition function. Since each cell

52

4.1 Generating Content

in the grid can take different states (such as On and Off) there exist cs states in the

automaton, where c is the number of cells and s is the number of different states a cell

can take. Furthermore the transition function requires a neighbourhood, i.e. which cells’

states affect the determination of a cell’s next state. The 4-cell von Neumann neigh-

bourhood (126) and 8-cell Moore neighbourhood (127) are probably the most used

ones. The first published automaton had 29 states and could reproduce a given pattern

indefinitely.

In the 1970s a different application became well-known: Conway’s Game of Life,

in which each cell in a two-dimensional grid was considered either as dead or alive

and neighbouring cells became alive if three “living” cells were adjacent. There are

multiple interpretations of the Game of Life: biological evolution, physical mechanical

systems or energy and matter in chemistry. A more playful application developed from

the challenge of creating self-reproducing patterns like Gosper’s gliding gun (128) that

shoots little spaceships in a reoccurring pattern.

While the applications mentioned can be more seen as games inside cellular au-

tomata, research has also been conducted into how to use them as part of games or to

create game assets. A recent application was the creation of levels for roguelike games

by Johnson et al. in 2010 (129). Each cell represented a part of the map while its

multi-dimensional state defined different features within the game, e.g. walls, rocks or

different special areas in the game. Sorensen and Pasquier (130) used a similar block

representation for the generation of levels for Super Mario Brothers but used a genetic

algorithm instead an automaton for the generation itself.

4.1.5 L-Systems

L-Systems (named after the Hungarian biologist Aristid Lindenmayer) were originally

introduced in 1968 (131) as a model to describe the growth and branching of plants.

The rules were developed to describe things such as symmetry of leaves or the rotational

symmetry of flowers (132).

The core concept of L-systems is rewriting, where a part of the initial object is

replaced with a new object or extended rule or production, similar to the concept of

functions or recursion in any modern iterative programming language. While Chom-

sky’s work on formal grammars (133) was similar, Lindenmayer-systems are intended

primarily as a solution to produce geometrical shapes.

DOL-Systems The simplest L-system is a so called DOL-System, a deterministic

context free L-system for string representations. It is defined as an ordered triplet

53

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

G = 〈V, ω, P 〉 whereas V is the set of literals (alphabet), ω ∈ V + a set of axioms that

are the distinguished start strings, and P a finite set of production rules as P ⊂ P×P ∗.
Rules (a, χ) ∈ P, a ∈ V, χ inV ∗ are denoted as a → χ. The application of rules, the

process of creating, is called derivation. It is assumed that for each a ∈ V exists one

production rule. If no production rule is explicitly stated, the rule a → a, a ∈ V is

assumed. It is further assumed that for every a ∈ V only one χ ∈ V ∗ exists, otherwise

the system would not be deterministic.

Example Consider the DOL-System G = 〈a, b, ω, a→ b, b→ ba〉. If we let b ∈ ω,

then the following derivation would unfold: For the sake of completeness it should

be added that there also exists more advanced variants of L-Systems (LS) such as

Stochastic-LS, where rules are only applied with a certain probability, Context-sensitive-

LS, where the left side of production rules may also be χ inV +, and Parametric-LS that

extend the triplet with another set Σ of formal parameters that are used to evaluate

logical expressions during the derivation. A similar concept are Functional-LS (134),

where the terminal symbols are replaced by terminal functions, allowing postponing

resolving requirements. The latter were used by Martin et al. for procedural scenario

creation in serious games (135), what may serve as a good example for a L-system

application in games that is not involved in the generation of art.

4.2 Computational Creativity

Work in this interdisciplinary field concerns problems such as how to quantify “cre-

ativity”, if it is possible to create an algorithm or machine which is capable of being

creative on a human level, and whether a program or machine could replace or aug-

ment a person’s creativity. Some key concepts around “what is creativity?” have been

proposed in the past. Following the idea that being creative means “to create some-

thing new”, Margaret Boden proposed (136) to distinguish between psychological- and

historical-creativity (abbreviated as P- and H-Creativity). P-Creativity refers to creat-

ing something that is new to the creator, while H-Creativity refers to creating something

that has been never created before by any human. Boden further proposed the terms

“exploratory” and “transformational” creativity. Although an object may be creative

by being “new”, nothing is created without a context. If an object is different, but

does not differ in the number and type of features (here: conceptual space, but could

be also compared to the search space described in section 4.1.1) to what it relates to,

it is created through “exploratory creativity”. Objects which were created through

changing the conceptual space are “transformational creative”, says Boden. We argue,

54

4.2 Computational Creativity

that these two concepts can be found in games published as well if we understand the

term “genre” as conceptual space. Although exploratory games, i.e. games that take

existing game ideas or themes (“clones”), are often received more negatively. Trans-

formational creative games are often game ideas which mediated from other media,

especially in the 1980s e.g. pong from table tennis, or hybrids between two existing

genres.

Coming back to field of computational creativity, Ritchie stated in 2007 (137), that

“creativity of humans is normally judged by what they produce” and that “underlying

processes are not observable factors, hence not reliable [for assessing a person’s level

of creativity]”. He also points out, that there is danger of a circular argument if we

assess both, which might lead to “the artefact is creative because it is the result of a

creative process because the result is creative”. Instead the process of creation (the

method) should be considered an artefact itself. Colton picks up on the idea, that

process and created artefact should be treated equally, and motivates this with an

example of an art lover who appreciates one of two identical pictures more because

of details of their creation processes. One picture is more appreciated than the other

because of a different background of the artist who created it. Similar behaviour can

be found among computer games players, who are sometimes more beneficial towards

a game made by an indie developer than a game made by one of the major publisher,

a game with technical shortcomings, less content, or non-standard graphics is received

differently depending on the game studio who created it. Colton proposes a “tripod

model” (138) to assess the behaviour of software, whether it should be perceived as

“creative” or not. Although Colton focusses more on software of the visual arts (e.g.

his own “The Painting Fool“ project (139), an artificial painter), we believe that this

might be applicable to procedural content generation for games as well. Here, the game

designer uses or creates an algorithm to create assets (e.g. textures, 3D models, etc.).

These are used in a game which ultimately will be consumed by players (the audience).

In Colton’s tripod model, each leg represents one of the behaviours which are required

in the overall process: appreciation, imagination, and skill. As there are three parties

involved, (the programmer, the software, and the audience), each can contribute to the

process. Therefore each leg of the tripod has three segments which can be extended

based on the size of the contribution. Then, says Colton, a software system can be

perceived as “creative” if at least one segment of each tripod leg is extended, i.e. if

the algorithm contributes skill, imagination, and appreciation, it can be perceived as

“creative” regardless the actions of the programmer and the audience. After a series of

case studies presented in the paper, Colton points out that “software which we want to

55

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

ultimately be accepted as creative in its own right needs to subvert any given notions

of good and bad artefacts.“ His tripod model is intended to “level the playing field

somewhat when people assess the value of computer generated artefacts.”, i.e. make

the creativity of humans and artificial creators comparable by “providing consumers of

the artefacts with some high-level details of how the software operates.”

4.3 AI and Learning in Games

The field of procedural content generation borrows various techniques from the field

and artificial intelligence or machine learning. Furthermore, our work on general game-

playing makes use of algorithms and concepts from this field. This section presents

techniques which were used throughout our experiments along with other related work.

We utilised different techniques to implement agents which are able to play a range of

games expressed in SGDL. Ultimately, our agents should be able to sufficiently play

any game expressed in SGDL, given that they had enough time to learn its rules. Tech-

niques presented in this section are not exclusive to games research, but are discussed

in this context.

4.3.1 Game Tree Search

There has been extensive research done on AI for traditional board games. In partic-

ular, Chess has figured prominently in AI research from the very start, as it is easy

to formalise and model, and has been thought to require some core human intellectual

capacity in order to play well. Among prominent early attempts to construct chess-

playing AI are Turing’s paper machine (140) and McCarthy’s IBM 7090 (141). Both

of these used the MinMax algorithm, which builds a search tree (or: “game tree” here-

after) of alternating actions of both players up to a certain depth (ply) and estimates

the value of the resulting board configurations at the nodes of the tree using an eval-

uation function. This poses the question of how to construct an accurate evaluation

function. An early pioneer in using machine learning to construct evaluation functions

was Samuel, whose self-learning Checkers player anticipated the concept of temporal

difference learning (142).

Advances in both algorithms and computer hardware permitted a program built

on the MinMax idea to win over the human Chess world champion in 1997 (143).

Subsequently, much research on board game AI shifted to the considerably harder

problem of playing the Asian board game Go. Go has a much higher branching factor

than Chess, and it is also harder to construct a good board evaluation function, meaning

56

4.3 AI and Learning in Games

Figure 4.1: Game Tree of an arbitrary two-player game. Each turn (node) the current

player has to make a binary decision (vertex). Blue nodes indicate a path through which

one player will certainly win; red nodes analogously for a second player. White nodes

indicate game states where the game is not decided yet.

that MinMax-based approaches have so far performed very poorly on Go. The current

best AI approaches to Go are instead based on Monte Carlo Tree Search (MCTS), a

stochastic technique that does not normally use an evaluation function (15, 144). Both

MinMax and MCTS will be described in the following.

The basic idea of a “game tree” is to represent possible courses of moves (for all

players) in a tree form, i.e. for each state in the game there exists a node, each vertex

to a child node represents a possible decision of the active player at that state. More

possible actions per turn result in a higher branching factor. Graphical examples of

game trees are commonly given for two player games, but the method is not restricted

to such. The number of players in a game does however effect the search strategy for

the best move of the current player, and the presented algorithms in this section work

on trees for two player games. The purpose of game tree algorithms is normally to find

a path through the game tree that will lead the current player most likely to a winning

outcome. Algorithms often rely on stochastic methods, as games may contain aspects

of chance. Another aspect to consider is the branching factor of a game tree, directly

increasing the runtime complexity when evaluating an exponential number of possible

outcomes. Figure 4.1 illustrates the course of an arbitrary two-player game, with each

node coloured in a players colour that, if the player follows that path, would lead to a

guaranteed win. This method is called “retrograde analysis”.

57

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

4.3.1.1 Min-Max Search

To create a full game tree (where every leaf node actually represent an end state of the

game) is very impractical for games which are not trivial. A higher branching factor

combined with increased game length leads to a tree which is infeasible to traverse

and compute in reasonable time. An approach to overcome this problem can be found

with the “Min-Max” algorithm. The algorithm “Min-Max” (sometimes Minimax) was

originally designed for two-player zero sum games (145), where players take alternative

turns. The name is derived from its strategy of “maximising its own player’s outcome,

while minimising the other’s”.

Instead of generating a complete game tree, the Min-Max algorithm creates a tree

of a certain search-depth (synonymously: look-ahead). Each leaf node is assigned a

quantitative value corresponding to the standing of the player who is invoking the

algorithm (player A). The values are back propagated through the intermediate nodes

up to the root of the tree. The value of an intermediate node is chosen as follows: if the

node represents a turn by player A, the largest value from the child nodes is assigned.

If it is a move by player B, the smallest value from the set of child nodes is assigned.

The child of the root with the highest value is therefore the most promising move for

the current state and therefore will be picked by the algorithm. Figure 4.2 clarifies this

on the basis of an example.

The advantage of MiniMax is clearly its versatility, e.g. Chess and Go can both

be played by the same algorithm. If the decision tree is created with an infinite look-

ahead, i.e. each leaf node is actually a state where the game ends, the algorithm

requires no knowledge about the game to make a qualified decision apart from the

information that a player has lost or won. However, the amount of memory resources

and required computation time make a limitation of the look-ahead necessary for almost

all interesting games. Then, the skill of the artificial player depends on the heuristic

function to assign a value to each leaf node. The main challenge here is to design

a meaningful heuristic function. If it relies on features which are actually irrelevant

to winning the game, the artificial player will display a poor performance in terms of

winning the game. Another disadvantage in terms of runtime performance is that the

MiniMax algorithm explores every child of a node regardless of how (un)promising the

already evaluated siblings of the child node are. This results in many evaluations of

nodes which the algorithm most likely would never chose.

One approach proposed to limit the search to promising branches of the tree is the

“Alpha-Beta” extension for MiniMax (also called “Alpha-Beta-Pruning”). The idea is

that the algorithm tracks two values (the eponymous “alpha” and “beta”) during the

58

4.3 AI and Learning in Games

-7

-7

-7

-7

-7 8

8

8

8 10

-10

-10

-12

-12

-12

-12

12

12

12 ∞

5

5

Figure 4.2: Example for the Mini-Max algorithm. The algorithm creates a game tree,

and assigns each leaf node a value based on the standing of player A. The value “infinity”

(∞) is often chosen to represent a game won by player A (resp. −∞ for losing the game).

The red arrows indicate how the values are back propagated through the tree: rectangular

node select the minimum value from their children, circular nodes the maximum. The blue

arrow indicates which move the algorithm ultimately selects.

search: alpha is the value player A would at least reach, beta the value player B would

reach at maximum (note that in this algorithm the value of player B is to be minimised).

If a maximising node (player A) holds a value which is higher than beta (beta-cutoff),

the exploration of that node will be stopped because player B would have never played

the move leading to this node. If instead the value of the node is larger than the current

alpha value, alpha is raised to that value and the exploration continues. The algorithm

proceeds analogously for minimising nodes (player B): branches with values smaller

than alpha are not explored (alpha-cutoff), values smaller than beta are explored and

beta lowered respectively.

4.3.1.2 Monte-Carlo Tree Search

As discussed about the Min-Max tree search, some games have game trees with enor-

mous ply depth or branching factors. This is especially true for strategy games, as there

are normally a large number of units present on the map, each with a multiple number

of possible actions. The number of possible outcomes for the next n moves can be

approximated as nx
y
, with x the number of units on the battlefield, and y the number

of possible moves per unit. This assumes that all units have one action to perform,

59

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

and that all units have the same number of possible actions, and that both players

have the same number of units on the map. Despite the assumptions, the increased

computation time renders a traditional Min-Max approach infeasible. Furthermore, a

heuristic function for a strategy game might either be hard to design or expensive to

compute.

In these cases the application of a Monte-Carlo techniques may be beneficial. In

a Monte-Carlo tree search (MCTS) the heuristic function is replaced by a sampling

technique: in each designated leaf node the game state is cloned n times, and each

copy is played out until the end by selecting random actions for each player. This

eliminates one of the main drawbacks of Min-Max: the design of a meaningful heuristic

function when an exhaustive search is not possible. MCTS has also the advantage that

selecting random actions significantly faster and requires less resources than informed

decision making. The utility of each leaf node for each player is determined by the

percentage of wins over the number of randomly simulated games (referred to as “roll-

outs”). Back propagating the utility of each leaf node, weighting the intermediate nodes

in the process, leads to the selection of the currently most promising course of actions

for a player. Another difference to Min-Max is, that the search tree is not built equally.

Different strategies exist to explore only the most promising tree branches while also

maintaining a certain diversity.

Monte-Carlo Tree Search in games has recently gained some popularity with the

board game Go (146). In regards of strategy games, the work of Silver et al. with

Civilization II may be highlighted (106, 147). They replaced the rollouts with an

artificial neural network. An interesting note about the presented agent is also that

the state evaluator function was trained through linguistic knowledge of the game’s

manual. A general overview of the applications of MCTS in games has been published

by Browne in 2012 (148).

MCTS is a technique used by one of our general gameplaying agents (presented

in section 7.2.5. One of the aspects explored there, that makes MCTs significantly

different from MinMax, are different exploration strategies, i.e. strategies of how to

expand the search tree. The Monte-Carlo value (Q) can be seen in equation (4.1),

where Γ is an indicator function returning 1 if the action a was selected in position s at

any of the i steps, otherwise 0, N(s, a) is the number of simulations through s where

action a was chosen, and N(s) =
∑|A(s)|

i=1 N(si, ai), where A(s) is a finite set of legal

actions from state s.

Q(s, a) =
1

N(s, a)

N(s)∑
i=1

Γi(s, a)zi (4.1)

60

4.3 AI and Learning in Games

Several tree policies have been published such as UCT (149) in Eq. (4.2), progressive

bias (150) in Eq. (4.3), Monte-Carlo Rapid Action-Value Estimation (MC-RAVE) in

Eq. (4.4), (4.5) and (4.6) and UCT-RAVE in Eq. (4.7) (151, 152).

UCT solves the exploration dilemma by utilizing the UCB1 (153) algorithm by

scaling the exploration factor c, so the amount of exploration can be limited.

QUCT (s, a) = Q(s, a) + c

√
log(N(s))

N(s, a)
(4.2)

Progressive bias is an added heuristic to the standard UCT heuristic to guide the

search. The impact of the heuristic lessens as simulations through state s using action

a increase.

Qpbias(s, a) = Q(s, a) + c

√
log N(s)

N(s, a)
+

H(s,a)

N(s, a) + 1
(4.3)

The RAVE values in MC-RAVE quickly converges to a bias value Q̃(s, a) for action

a from the subtree of the node representing state s. Since this value is biased, MC-

RAVE uses a decreasing factor β(s, a) relying on a k-value to determine how fast the

factor decreases. Sylvain Gelly and David Silver found the highest win rate in Go

using a k-value of 3000 (151). Due to lower MCTS iterations, the k-value had to be

lowered in the experimentations and rely more on the actual Monte-Carlo values and

not the biased RAVE-values. Because the MCTS agent used a heuristic, the biased

RAVE-values were evaluations from subtrees instead of actual playout values.

QMCRAV E(s, a) =
(
β(s, a)Q̃(s, a) + (1− β(s, a))Q(s, a)

)
(4.4)

β(s, a) =

√
k

3N(s) + k
(4.5)

Q̃(s, a) =
1

N(s, a)

Ñ(s)∑
i=1

Γi(s, a)zi (4.6)

UCT-RAVE adds the exploration factor c
√

log N(s)
N(s,a) from UCT to MC-RAVE.

QUCTRAV E(s, a) = QMCRAV E(s, a) + c

√
log N(s)

N(s, a)
(4.7)

61

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

qastart qb

1

0

1

0

Figure 4.3: Example of a simple finite state machine. The input 1 lets the machine

alternate between stating state qa and state qb. The input 0 has no effect on the current

state.

4.3.2 State machines

Finite state machines (or finite automata) are a widely used mathematical model used

to specify behaviour of a (software) system. The basic mathematical model of a finite

state machine (FSM) is a quintuple, including an alphabet Σ of possible inputs, a

non-empty set of states S that can be visited during program execution, the initial

state s0, a state transition function δ : S × Σ → S, and a set F ⊂ S of final states

which may be empty. A FSM can be extended to a finite state transcoder (FST) by

adding a non-empty set of output symbols Γ and changing the transition function to

δ ⊆ S × (Σ ∪ {ε}) × (Γ ∪ {ε}) × S (where ε is an empty symbol). Figure 4.3 shows

a simple example, a state machine which alternates between two states without any

output. The set of states S is here S = {qa, qb} with an input alphabet Σ = {0, 1}.
The list of final states in this example is the empty set F = ∅. The state transition

function δ can be described as a set of triples, describing the start state, input, and a

new state δ = {{qa, 0, qa}, {qa, 1, qb}, {qb, 0, qb}, {qb, 1, qa}}.
It should be added, that one of the disadvantage of traditional FSM is that with

increased complexity of a program, and therefore increased number of states necessary

to represent it, the number of state transitions grows exponentially if fully connected.

This ultimately leads to graphical representations which may be very difficult to com-

prehend for humans. One approach to this problem is the concept of “hierarchically

nested states” (or “hierarchical state machines”) which is part of the Unified Modelling

Language (UML). Every nested state is also implicitly its surrounding state. If an input

is not explicitly handled by the current state, it its passed to a higher-level context,

the superstate.

Evolving FSMs for various problems goes back to the 1960s to work by Lawrence J. Fo-

gel et al. (154) and has been established as a widely applied technique in the field of

evolutionary computation. The evolution of FST was recently explored by Lucas in

2003 (155).

62

4.3 AI and Learning in Games

4.3.3 Decision- and Behaviour Trees

Decision Trees are graphs which can be used to visualise algorithms. They represent

a chain of if ... then .. else decisions. The root node represents an initial problem,

e.g. should a game character move left or right, and each node represents an atomic

decision like “if x > 5 then follow the right branch, follow the left branch otherwise“.

Leaf nodes represent answers to the initial problem, e.g. “move left” or “move right”.

Besides behavioural decisions, they are widely used for classification (156).

Behaviour trees are a concept originally published by Domey (157) to visualise

software requirements written in natural language in an more comprehensible form,

but have been used for (game) AI development in the past (158, 159). Their advantage

over more traditional AI approaches, e.g. finite state machines, is their simple and

reusable modularity. Each tree describes potential paths from an initial- to one or

more goal-states and thus can be linked with other trees to achieve high-level goals.

Behaviour trees are probably the most similar technique compared to SGDL (even

though for a completely different purpose): behaviour trees distinguish between two

types of nodes: conditions and actions. While conditions query a program state steer

the control flow, i.e. which nodes of the tree are traversed, actions execute methods

and can change the program state. The latter distinguishes them from decision trees.

So far, behaviour trees have been used mainly for modelling game bot behaviour.

Lim et al. (160) have used behaviour trees to evolve the behaviour of a game bot for

Defcon, a commercial real-time strategy game. Their bot was able to outperform the

built-in AI in more than 50% of the games played. Two of the authors of that publi-

cation, Baumgarten and Colton, had already published a bot for Defcon earlier (16).

There, they used a combination of case-based reasoning, decision tree algorithms and

hierarchical planning. Unfortunately, no comparison with the behaviour tree bot are

known to the authors.

4.3.4 Neural Networks

(Artificial) Neural Networks are a commonly used concept in machine learning. They

are a mathematical model, inspired by biological neural network, used for function

approximation and pattern recognition. Initial research was performed by McCul-

loch and Pitts (161). Other significant publications were made by (among others)

Kohonen (162), Werbos (163), and Hopfield (164).

The overall idea is based on the concept of a perceptron, a single node in a feed-

forward fully connected graph. Each perceptron has an activation function which gen-

63

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

erates one single output based on n different inputs. The inputs are combined into

a weighted sum and fed into an activation function which determines the output of a

perceptron. Perceptrons are arranged in layers. The first layer taken several inputs

from an external source, the last layer forms one or multiple outputs of the network.

The layers in between are normally referred to as “hidden layers”.

Neural Networks are able to approximate and “learn” unknown functions. In a

supervised learning process, inputs are fed into the network and the error from the

(known) output values are back propagated (hence the name “back propagation” of

the learning process) into the network. This alters the threshold parameters of the

activation function or the weights of inputs in each perceptron. Back propagation

however does not adapt the topology of a neural network. This may be beneficial if we

consider that many computer strategy games have enormous branching factors. Since

the high branching factor on the micro decision level is very challenging for AI systems,

it may be more promising to limit their usage to macro level decisions and rely on

simpler techniques, e.g. fixed finite-state machines, for actual task executions.

Olesen et al. used Neuroevolution of Augmenting Topologies (NEAT). NEAT, cred-

ited to Stanley and Miikkulainen (165), and neuroevolution in general treat neural net-

work as a genome of a genetic algorithm, and uses the principle of evolution to evolve

a network topology which approximates the required function. In regards to strat-

egy games, NEAT has previously been used to evolve agents for the game Globulation

2. Through dimensionality reduction based on expert domain knowledge they were

able to create controllers that could adapt to a players’ challenge level offline and in

realtime (166).

4.3.5 Genetic Algorithms

A Genetic algorithm (GA) is search heuristic that mimics natural evolution. GAs are

classified and often used synonymously as Evolutionary Algorithms (EA). Although

related, the field of EA distinguishes between GAs and related techniques such as

Genetic Programming (see section 4.3.6) and others. Using natural selection, and

other mechanisms related to natural evolution, as a search heuristic goes back to the

1950s when a publication of Nils Aall Barricelli (167) et al. received a lot of attention.

Today GAs are a popular technique for optimisation and search problems.

A Genetic Algorithm consists of a problem statement, formulated as a fitness func-

tion, that evaluates the quality of a solution. The solution is often encoded in a geno-

type (or chromosome) which is resolved into a phenotype later in the testing process.

It may be clearer when this process is translated into an example: the template for

64

4.3 AI and Learning in Games

most living beings (e.g. humans) are their DNA. This DNA acts as a template for

the features the body will grow (e.g. skin color or body height); environmental factors

set aside. Beside the problem encoding and the fitness function, a GA also consist of

several mechanism for how new solution candidates are created. They can be created

through pure random sampling or based on the fitness of previously tested solutions.

Solutions can be either created through combining two previous solutions (cross-over)

or manipulating a single one (mutation). This on the other hand creates the problem of

which previous solutions should be selected to form a new solution. A common solution

for that is selecting candidates from the top 50% of the previous generation or do a

weighted-random-selection among all candidates.

Overall a genetic algorithm improves a set of possible solutions iteratively, where

each iteration is normally referred to as a “generation”. Commonly each generation is

constructed based on the previous one as described in the paragraph above. The algo-

rithm continues until a stop condition is hit. Usual stop conditions are time constraints

(number of iterations), or reaching the goal (optimal or “close enough” fitness).

4.3.6 Genetic Programming

Genetic Programming (GP, we will use this synonymously for the field and a potential

solution (Genetic Program) in the following) is a evolutionary technique that is related

to Genetic Algorithms (GA). While early GPs were used to model finite-state-automata

or markov-decision-processes, he “modern” GP is a technique that uses a tree based

representation to model logic statements or programs in general. Trees are often used to

model mathematic expressions, but may also contain functions which have side effects

(analogue to imperative and functional programming). This approach was developed by

Cramer (168) in the 1980s, but became widely popular through the work of Koza (169)

later. Before tree-based GP is explained further, it may be mentioned that also the

technique of linear genetic programming exists where chromosomes are interpreted as

a sequence of commands, similar to assembler instruction codes that are sequentially

fed into a microprocessor. Furthermore, Cartesian genetic programming is a technique

developed by Miller and Thompson (170) to encode complete graphs into a chromosome.

However, the form of GP relevant for SGDL uses a tree based genotype. There is no

standard encoding but a common technique is to use a string-based representation. For

example, the string y = 3 * x * x + 4 * x + 12 is a common way to express the equation

y = 3x2 + 4x+ 12. If the mathematical operators are interpreted as intermediate nodes

and the constants as leaf nodes, the example may be also noted as a tree: While the

parent-selection is no different from GAs, the cross-over mechanism refers to changing

65

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

+

+

∗

∗

x x

3

∗

x 4

12

Figure 4.4: A GP tree modelling the example y = 3x2 + 4x+ 12

nodes or complete subtrees between solutions. On the other hand the mutation may

affect only the values of a single node or all nodes from a specific subtree.

4.4 Modelling and Generating Game Mechanics

This section presents previous approaches to capture and model behaviour of software

and algorithms. Even though our focus lies on game related approaches, we also briefly

present approaches which are it directly targeted at games.

4.4.1 Unified Modelling Language (UML)

The most versatile approach to represent algorithmic behaviour can probably be found

in the Unified Modelling Language (UML). UML is a standardised language to express

the structure and the behaviour of software or processes in general. Since its first pro-

posal in the early 1990s it has become an accepted standard for software specification

and inter-team communication within the software industry and the field of software

engineering research. It features a variety of ways to visualise the architecture of a

program, categorised into different diagram schemas. Two of the most well known dia-

grams are class diagrams, visualising the class structure of an object-oriented program,

and a use-case diagram and sequence diagram to visualise the interaction of different

components within- or users and other actors with the software. Furthermore, UML

diagrams are often used with code generation. Code generation in this context means

66

4.4 Modelling and Generating Game Mechanics

that a software takes a user generated diagram and transforms it into source code.

Such a system makes use of a template library, and substitutes - similar to a compiler

- pre-defined tokens with the user defined content.

4.4.2 Stanford GDL

The probably most well known and versatile Game Description Language (GDL) was

proposed by Love et al. at the University of Stanford and thereby is often referred to

as Stanford GDL. The aim is to model all games that are discrete and have no hidden

information as a game element, but was recently extended to include non-deterministic

elements and partial information (171). GDL is a variant of Datalog, a subset of Prolog

often used as query language for deductive databases. The rules of a game are given

as Datalog rules. Games are modelled as state machines and players’ inputs act as

transitions. The outcome of the game (winning, losing etc.) is determined by which

end state is reached. Unfortunately, such explicit representations are impractical with

more complex games, e.g. chess has approximately 1031 different states.

Instead, in GDL each game consist of a database schema, and each gamestate

corresponds to an instance of this schema. The database holds the states of all objects

and variables of the game in the current state. For example, a gamestate of Tic-Tac-Toe

is listed1 as:

• cell(1,1,X)

• cell(1,2,B)

• cell(1,3,B)

• cell(2,1,B)

• cell(2,2,B)

• cell(2,3,B)

• cell(3,1,B)

• cell(3,2,B)

• cell(3,3,B)

The game’s actual logic is expressed in logic statements rather than tables (an

explicit state transition function). The key elements of the GDL vocabulary are the

following words:

• role(a) means that a is a role / player in the game.

• init(p) means that the datum p is true in the initial state.

• true(p) means that the datum p is true in the current state.

1The example and details are taken from GDL’s official webpage: http://games.stanford.edu/

language/language.html

67

http://games.stanford.edu/language/language.html
http://games.stanford.edu/language/language.html

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

• does(r,a) means that player r performs action a in the current state.

• next(p) means that the datum p is true in the next state.

• legal(r,a) means it is legal for r to play a in the current state.

• goal(r) means that player r’s goal is achieved in the current state.

• terminal means that the current state is a terminal state.

Tthe actual game mechanics are split into conditions (the legal keyword) and con-

sequences (the next keyword); though next rules are not directly bound to legal clauses

what allows them to be triggered also implicitly by players’ actions.

However, GDL is much more verbose than Browne’s Ludi (see section 4.4.4). What

Browne abbreviates as “in-a-row 3” is expressed in GDL as:

• line(P) ¡= row(M,P)

• line(P) ¡= column(M,P)

• line(P) ¡= diagonal(P)

• row(M,P) ¡= true(cell(M,1,P)) & true(cell(M,2,P)) & true(cell(M,3,P))

• column(M,P) ¡= true(cell(1,N,P)) & true(cell(2,N,P)) & true(cell(3,N,P))

• diagonal(P) ¡= true(cell(1,1,P)) & true(cell(2,2,P)) & true(cell(3,3,P))

• diagonal(P) ¡= true(cell(1,3,P)) & true(cell(2,2,P)) & true(cell(3,1,P))

The actual definition of Tic-Tac-Toe is given in the language description document (172)

and spans over a few pages. GDL is also used (and was designed for) in a “general game-

playing competition”. There, artificial players try to compete over winning previously

unseen games modelled in GDL. Ultimately, no approaches to evolve game mechanics

using GDL are known to the authors.

4.4.3 Answer Set Programming

Another approach to model game mechanics was published by Smith et al. His game

engine “Ludocore” (173) is intended as a prototyping tool for game developers. It is

based on answer set programming (ASP), and provides an API for common functions

such as game states and game events. ASP is a subset of Prolog, and programs are

given in the form of logical statements:

• wet :- raining.

• wet :- sprinkler on.

• dry :- not wet.

• :- not wet.

The example translated into plain English defines, that the ground is wet if it’s raining

and/or the sprinkler is on. It further defines “dry” as “not wet”, and that “wet”

is true (technically it defines that “wet” is not unprovable). The example above is

68

4.4 Modelling and Generating Game Mechanics

actually taken from another of Smith’s publications, using ASP for procedural content

generation of game rules. His project “Variations Forever” (174) uses ASP to search

a generative space of mini-games which all take place on a rectangular grid. The

generator, based on an ASP solver, populates the grid with different coloured agents,

assigning each colour a movement model. Furthermore, each agent type is assigned a

table of effects in case they collide with other agents (plus a player controlled agent) or

obstacles which are also placed in the game world. Possible effects are “bouncing the

agent back”, “kill the agent”, or similar. Analogously a goal of the game is created.

Although slightly more complex, this work is similar to the experiment done by Togelius

and Schmidhuber, presented in section 4.4.6.

As a concluding remark it seems notable, that a similar language to ASP has also

been used in commercial game creation software. The software “Zillions of Games” (175)

has an active community of game designers at the time of writing.

4.4.4 Ludi

The work by Cameron Browne mentioned in section 3.2.4 is part of his “Ludi” frame-

work (95). Ludi is a framework to define and evolve “combinatorial games”. Browne

defines combinatorial as follows, covering a large subset of board games:

• Finite Games produce a well-defined outcome

• Discrete Turn-based

• Deterministic Chance plays no part

• Perfect Information Nothing is hidden from the players

• Two-player

The core idea of the Ludi Game Description Language are Ludemes, units of indepen-

dently transferable game information (“game memes”), e.g. (tiling square) for a board

layout or (size 3 3) for the game board’s size. Compared to Stanford’s GDL from

section 4.4.2 the description of Tic-Tac-Toe in Ludi is rather brief:

(game Tic−Tac−Toe

(p l a ye r s White Black)

(board

(t i l i n g square i−nbors)

(s i z e 3 3)

)

(end (Al l win (in−a−row 3)))

)

69

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

The game consists of a definition of a board, square tiles and 3x3 in size, where players

Black and White have both the victory condition to achieve three in a row.

Both Ludi and SGDL use tree structures to represent game mechanics. But com-

pared to SGDL, Ludi is more brief and ludemes are more high-level compared to SGDL

tree nodes, i.e. ludemes such as “three in a row” would require a whole subtree. On

the other hand, if the victory condition should be changed to “one in each corner”, a

new ludeme has to be programmed as the language does not permit a finer grained

modelling of ludemes. However, the language as published allowed Browne to develop

a framework which was able to evolve combinatorial games using the fitness measures

presented in section 3.2.4. Like similar systems, Browne uses artificial agents (using

standard Alpha-Beta search) to play the modelled games. As a state evaluator function

he uses an ensemble of twenty different advisor functions which are fed into a linear

combination which is configured for each game using an evolutionary strategy. Notable

here is that the weight vector for the fitness weights was optimised using human play

testing, and the initial population is filled using manually designed games. New in-

dividuals were created using probabilistic selection based on a individuals fitness and

subtree crossover. Overall, the system was so successful in creating appealing games

that Browne managed to have one of his games published as a physical board game.

His game Yavalath (176) can be bought in toy stores or online.

4.4.5 ANGELINA

The ANGELINA1 system is a project developed by Michael Cook (177). Cook in-

tends to model and evolve arcade games: games where players run through simple

two-dimensional worlds, try or not try to avoid objects, and perform simple quests

such as finding keys to the next section of the game. The ANGELINA system performs

individual evolution, i.e. the three components of an arcade game, maps, rulesets (or

powersets) and character layouts, are evolved independently and use separate fitness

functions through co-operative co-evolution. Maps are represented as two-dimensional

integer arrays, that partition the game world into 8x8 areas and define textures and

collision properties (solid or non-solid). Character layouts define the classes of enemies

a player may encounter. Results presented by Cook in 2012 (178) show that the system

is able to generate simple Metroidvania platform games, but indicate a gap between the

fitness values and the players’ preferences. Furthermore, study participants had diffi-

culties distinguishing between decisions the artificial designers made and implications

made by the designers of the framework. To address the gap between fitness value and

1a recursive acronym: A Novel Game-Evolving Labrat I’ve Named ANGELINA

70

4.5 Summary

enjoyment, Cook proposes the addition of other aspects into the fitness functions such

as difficulty or simulated combat. Furthermore, Cook reports that one problem of the

evolutionary system is that it converges on local optima.

Although ANGELINA has another genre of games in focus and uses a different

representation than a tree of any kind, future work with SGDL could adapt the idea

of parallel evolution. An interesting direction of research would be for example the

independent evolution of combat and non-combat units. As we will see in section 8.1,

it is hard to combine both types under the same definition of “balance”. Separating

both unit types into different genomes could possibly overcome this problem.

4.4.6 Fixed length genome

Not all published approaches to game mechanics generation provide full description

languages or grammars to represent game mechanics. Often a problem tailored rep-

resentation of a specific game’s logic is sufficient. For example, Togelius and Schmid-

huber (104) used a fixed length genome, an array of integers, to encode the outcome

of a limited numbers of events in a “predator prey” game. In a Pac-Man-like game

the player controls an agent in a two dimensional labyrinth. The labyrinth also hold a

multitude of other objects which are controlled by artificial agents.

They defined a number of types of objects which could be in the game, a player

avatar and three types of differently coloured game pieces. The genotype includes a

behavioural model for each type (except the player agent), e.g. random moves or cir-

cular movements, and a matrix which defines the outcome of two game pieces colliding

in the game. The framework contains several possibilities such as “teleport to random

location”, “remove object A from the game”, “increase/decrease the player’s score”,

or “the game ends”. The fitness function used in that experiment was described in

section 3.2.5. Togelius and Schmidhuber themselves describe their experiment as a

proof-of-concept to demonstrate the use of their fitness functions, and focussed less on

the representation of the game rules; which is very basic as they report. A more criti-

cal point is, as they point out, that their agent did not show satisfactory performance

in learning the games and would probably perform even worse with actually complex

games.

4.5 Summary

This chapter presented a series of related approaches from the field of computational

intelligence in games and machine learning. We focussed on previously published ap-

71

4. RELATED COMPUTATIONAL INTELLIGENCE IN GAMES
RESEARCH

proaches to model and generate different aspects of games. We discussed the general

approach of procedural content generation in games, also in regards of the question

if computers or their work may be seen as “creative”. Although we do not intend

to cover the aspect of computational creativity in detail, it should be mentioned that

SGDL resp. the SGDL framework is partly designed to augment a human game de-

signer’s creativity and serve as a rapid prototyping framework. It could be argued, that

our evolutionary algorithms are artificial game designers, who either extend the work

of a human, or create their own, and therefore could be called “creative”.

A significant part of this chapter presented techniques from the field of machine

learning which form a basis for the experiments presented in the course of this thesis.

Some of them will be used in our work, e.g. a cellular automaton is used in our case

study for a map generator, described in section 6.2. We concluded this chapter with an

overview of other approaches to model and generate game mechanics which influenced

the development of SGDL. The next chapter will now shift the focus to the main

contribution of this thesis, the Strategy Games Description Language (SGDL).

72

Chapter 5

The Strategy Games Description

Language (SGDL)

This chapter presents the Strategy Games Description Language and its framework.

Chapter 6 will present examples how it has been used so far. The language was devel-

oped and extended as necessary. At the time of writing, the modelling of commercially

available strategy games was still an ongoing goal, and further additions to the lan-

guage might be necessary. However, it was sufficient to perform the research presented

in chapters 8 and 10.

5.1 Design Paradigms

The foundation of most modern linguistic research is Ferdinand de Saussure’s struc-

turalist approach which defines “language” as a system of signs and rules how signs are

arranged and may interact (grammar) so humans can communicate (transport meaning;

semiotics) about objects which are not immediately present (179). While Saussure’s

work is primarily about natural languages, his observations can be extended to engi-

neered languages used in machine learning and artificial intelligence research. Although

we do not intend to present a formal language capable of logical reasoning, we would

like to discuss a few characteristics often applied to knowledge representation in regard

of SGDL. These requirements were defined in an early stage of the SGDL project, and

lead to the structure as it will be presented in the following sections.

Completeness SGDL is intended to be able to model all aspects of strategy games,

including some published and successful games. This however is highly theoretical: as

73

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

we discussed in chapter 2. The boundaries that can be considered a strategy game -

and what not - are blurry. Some cases can be clearly discarded from our point of view,

e.g. first person shooters such as Quake, others like Sim City are debatable. Although

some topologies of games have been proposed (by Aarseth et al. (180), among others) in

the past, we found no concluding definition. We will therefore work with the definition

presented at the end of chapter 2.

Human readable The structure of SGDL is representable in many forms, e.g. graph-

ical trees or grammars. It can be also expressed in an XML document. This enables

people to read and edit SGDL models manually at least on a micro level. In SGDL op-

erations are modelled down to single operators. This naturally leads to a large number

of nodes per tree. As a result, SGDL models might be hard to comprehend for humans

on a macro level. We will discuss this aspect later in section 11.3.1.

Evolvable The space of games that can be expressed should be easily traversed i.e.

be searchable. One of the main implications of this property is that the language

should have a high locality, meaning that similar descriptions (genotypes) in general

give rise to games (phenotypes) with similar fitness values. We defined SGDL as a tree

structure so existing research and techniques from the field of genetic programming can

be applied.

Locality Changing a single node in a SGDL tree should have limited implication on

the gameplay the tree implies. The change of a whole subtree however should pose a

larger change.

Concurrent turns Although not a property of the language per se, the concept

of concurrent turns (used synonymously with simultaneously hereafter) affect the im-

plemented framework. Many strategy games, e.g. Civilization or Diplomacy, permit

simultaneously turns in some modes. Moves in turn-based strategies often require ex-

tensive planning and are time consuming, therefore many multiplayer strategy games

offer the possibility of simultaneous turns. This aspect of strategy became more promi-

nent with the introduction of computers as game-masters and network technology as

discussed in chapter 2.

We observed that simultaneous moves in turn-based strategy games are merely used

for convenience, i.e. to reduce the waiting time for players with minimal implications

on the game rules. We therefore decided to keep the SGDL framework simple and

only allow games with consecutive turns. Although the SGDL framework currently

74

5.2 Basic Concepts and Terms

includes no network component, multiplayer games at one screen or games against

artificial players are possible. The implications on game mechanics are therefore the

same. The subsequent problem for our “balancing” (see section 8.1) fitness is therefore

the advantage of the opening move: when among two equally skilled players with equal

starting positions and conditions one player has the advantage by just making the first

move.

5.2 Basic Concepts and Terms

Strategy games, as we presented in section 2, have in common that the game world

consists of a map which is populated by various objects. Those objects can either be

static passive objects, e.g. debris, or dynamic objects players can interact with, and

thereby influence the gameplay. All objects in the game world are unified under the

concept of classes of WorldObjects.

WorldObjects are all the objects that are game-relevant. Some WorldObjects are

in a spatial relation, i.e. directly on the map, others are abstract objects such as

players or game mechanics that are invisible to the player. The first example could

be a tree standing on the battlefield, while the second example could be a factory off

the map; providing the player with reinforcements. Borrowed from object oriented

software programming, every WorldObject is an instance of a class (ObjectClass in the

following), defining a data state and a behavioural model. We will refer to the data

state of a WorldObject as Attributes and its behavioural model as a set of Actions.

ObjectClass An ObjectClass is a template which includes business logic how in-

stances may interact in the game. The term business logic is often used in software

engineering to describe the actual behaviour of the software, excluding framework rou-

tines which handle input- and output-operations. Following the object oriented pro-

gramming nomenclature, the attributes correspond to member variables while each

action could be seen as a method that could be called on an object. The key difference

is that the behaviour of actions resides in a dynamic model while programmed meth-

ods normally exist only as machine code during runtime in conventional programming

languages. The method we use to model the behaviour of actions is a tree structure,

which is also very common technique in genetic programming.

• Attributes are a data vector that can be associated with a WorldObject

75

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

• Actions are the abilities a WorldObject could enact. All instances of a certain

ObjectClass share the same actions, but have their own copy of their Attributes.

Note: WorldObject and ObjectClass should not be confused with the terms class

and instance of the language in which the framework is implemented (Java in our

case). An actual object in the game is an instance of the (Java) class WorldObject

which is associated with an instance of the (Java) class ObjectClass. Defining another

class-object layer on top of an existing object oriented language enables us to be as

independent from a certain implementation as possible.

Attributes An Attribute in general is a simple Object-Data relationship, i.e. a

member variable of an instantiated object of a class. These immediate attributes will

be called Constant Attributes, a simple data holder. The term “constant” here refers

to the container itself, not the value. We will also present Attributes that require

more context to determine their value, i.e. the location where the actual data resides

is non-constant. A WorldObject always possesses at least one attribute, namely the

ObjectClass it’s derived from. The most common attributes are x and y to position an

object on the map.

Actions Actions correspond to methods from object oriented programming. Like a

method body, the SGDL tree only specifies the static behaviour but not the control flow

outside the method, i.e. an Action does not control when or if it is invoked. The control

lies within the implementing system of a game engine. The engine controls whenever

interactions of the player with the system may lead to action invocations or not (e.g.

it may not be the player’s turn). SGDL is intended as a declarative language, although

the Operator nodes in Consequence subtrees (describing assignments of variables) make

it more a hybrid language between a declarative and an imperative approach.

SGDL is designed as a layer within a game engine with interface logic above. The

invocation of an action is split into two parts: the conditions and consequences.

Both share the concept of a context vector which is passed into the action to determine

both the result of the conditions and (if applicable) the consequences. The context

vector contains all WorldObjects passed down from the interface layer, including the

object the action is triggered on (the acting object) and the game state. Again, SGDL

does not specify the control flow, or how players actually interact with the game ob-

jects. SGDL just assumes, that at one point the player’s interaction with the game

interface results in an invocation of a WorldObject’s Action. Creating an efficient user

interface based on arbitrary game rules is unfortunately outside of the current scope of

76

5.3 The SGDL Tree

Figure 5.1: Selecting an Action in the SGDL Game Engine

our research, and we resorted of a very basic interaction model: we provide a popup

menu with an entry for each Action a WorldObject might perform at that game state

(figure 5.1).

5.3 The SGDL Tree

The SGDL tree is a strongly typed tree, i.e. the type of potential child nodes are

determined by the parent node. Similar to a grammar, only syntactically coherent

trees are permitted. However, no assumption about semantic correctness is imposed.

SGDL consists of a variety of different node types. The root node is reserved for meta

such as version and other debug information used during development. At the top level

the tree defines ObjectClasses, the game state template, the player state template, and

the winning conditions. Figure 5.2 shows a general overview: a set of ObjectClasses,

the player and game state (described in section 5.4.2, and a list of winning conditions

specifying how to win a game. Figure 5.3 shows a complete overview of all node types

defined so far. They will be described over the following sections and include:

• SGDL is a meta node and combines all subtrees into a single model.

• ObjectClasses are WorldObject templates.

• Operators are value assignments.

• Comparators are logical operations.

• Actions Define WorldObjects abilities.

• Attributes are various nodes that point to a data value. These include:

– Constant Attributes

– Property Nodes

– Special Functions which are nodes that incorporate certain domain knowl-

edge, that would be hard or impossible to model (e.g. map related functions).

– Object Nodes (references to WorldObjects)

77

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

• ObjectList/-Filter Allow the combination/manipulation of several WorldOb-

jects at a time.

5.3.1 Attributes and Object References

The major group of node types are classified as Attributes. Although they work dif-

ferently they all have in common that they pass a data value up to its parent node

during a condition or consequence test. The simplest node, the ConstantAttribute, is

a leaf node, that can be attached to an ObjectClass, and thereby become a mutable

attribute, or to another node in the tree. The latter makes a ConstantAttribute an

actual constant, as nodes within the tree can’t be referenced or manipulated; the term

ConstantAttribute just refers to a static reference to a variable otherwise. To refer

to ConstantAttributes attached to ObjectClasses, i.e. properties of WorldObjects, a

Property Node is used. That node defines the attribute name to be resolved from an

adjacent Object Node, the game state, or the player states. Formally, an Object Node

is an attribute that returns a WorldObject instance based on its configuration. The

Property Node resolves the data value from that WorldObject.

Example 1: The most common case, seen in figure 5.4, is accessing a WorldObject

from the context vector. Objects are referenced by their index in the vector, starting

with zero for the acting object. The minimal example in figure 5.4 has a Property

Node referring to the attribute “a” of its children Object Node. That node refers to

WorldObject 0, which is the actor, i.e. the object a player used to click on. All node

types combined express logical or mathematical expressions as a tree.

5.3.2 Conditions

A Condition is a sub tree, with a comparator as a root node, that returns a boolean

value up to its parent. The boolean value “true” indicates that the condition may

be fulfilled. It consists of a symbol representing a logical comparison, and one or two

operands. The inputs of the operands - and therefore the child trees - are ordered, i.e.

asymmetrical operations are well defined (3 < 5 6= 5 < 3), left and right subtree of a

node correspond to the left and right side of an equation. Furthermore, the data types

must match the comparator, e.g. determining the lesser or equal string literal of two

may not be defined, but testing if they are equal is. The following boolean operations

are defined:

• The arithmetical operations <,≤,≥, > for any numerical values

78

5.3 The SGDL Tree

SGDL

ObjectClasses game state player state Win Cond.

Figure 5.2: The overall SGDL tree.

SGDL

(a) SGDL

Class A

(b) Object Class

=

(c) Operator

<

(d) Comparator

A

(e) Action

a

(f) Constant

P

(g) Property

MAP

(h) Special Function

((0))

(i) Object Reference

L

(j) Object Filter

Figure 5.3: Overview and graphical representation of the SGDL node types.

79

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

a

(0)

Figure 5.4: Accessing a property

<

0 1

(a) Comparing two con-

stants

<

0 a

(0)

(b) Comparing a constant to a prop-

erty

Figure 5.5: Two elementary examples of subtrees comparing constants.

• The logical operations and, or, nor, xor, not for boolean values

• The operations =, 6= for every data type

The smallest example is the comparison of two Constant Attributes, which would always

return the same logical value (e.g. the example in figure 5.5(a) would always be true).

A more relevant examples would be comparing an attribute to a constant. The example

in figure 5.5(b) displays a subtree which returns true if the attribute “a” of the acting

WorldObject is larger than zero. The output of a Condition can be fed in turn into

another condition as an input, allowing the definition of cascading logical expressions.

Suppose we extend the example above, as in figure 5.6(b). We can add a reference to a

second object and a test to see if its “b” attribute is unequal to one. Note: The SGDL

model only assures a correct syntax of the model. A further direction of research (we

did not explore yet) would be the implementation of model checking techniques. Even

though we partially address this issue in one of the experiments in section 9.2.1, the

language allows the definition of oxymorons. E.g. the example seen in figure 5.6(a)

would never return true.

80

5.3 The SGDL Tree

&

<

0 a

(0)

>

0 a

(0)

(a) A Condition that would never be true.

&

<

0 a

(0)

6=

1 b

(1)

(b) Several Conditions linked together

Figure 5.6: Extended conditions

81

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

=

a

(0)

0

Figure 5.7: The attribute “a” of the acting WorldObject is assigned the constant value

“0”. This implies that “a” has been defined as a numerical value before. Data types are

not displayed within the visualisation of a tree.

5.3.3 Consequences

Consequences work analogous to conditions, but instead of passing a value in the ver-

tical direction of the tree, they work horizontally from right to the left. The subtree’s

root node is an Operator node, which evaluates its right subtree and assigns and/or

combines it with the result of the left subtree. This requires that the result and the

target are of compatible data types, i.e. a Consequence can’t assign a nominal value

to a numeric Attribute or vice versa. It also requires that the left subtree can accept a

data value to pass it down to its children. Analogous to resolving values, the common

example is a Property Node that works as an assignment target, as seen in figure 5.7.

This assigns the value 0 to the Attribute “a” of the acting object, assuming that “a”

is a numeric attribute.

Creating WorldObjects Consequences can be used to create new WorldObjects on

the map. A plain Object Node with the keyword NEW can be used as a source for

a new object. The node then takes an alphanumerical Constant Attribute with a class

name as a child. To place a new WorldObject on the map a SpecialNode MAP is

used. This case is presented in section 5.4.1.

5.3.4 Actions

Actions are sub trees with an Action node as a root. They are always part of an

ObjectClass and represent an ability a WorldObject may use within the game. They

further posses several Conditions and Consequences as child nodes. While theoretically

possible to exist as a stand-alone node, an Action always has at least one Consequence.

If no Conditions exist, the Action is treated as unconditional. Whenever an Action of

82

5.3 The SGDL Tree

inc

<

a

(0)

0

+ =

a

(0)

1

Figure 5.8: The action “inc” has one Condition, the property “a” of the acting object

must be lesser than zero, and one Consequence. The + = operator combines the value

of the right subtree (here a constant) and combines it with the left subtree. Operators

that need two operands evaluate the result of the left subtree as well first, and assign

the result back into the left subtree. The textual representation of the tree would be:

if (O0.a < 0) thenO0.a+ = 1

an WorldObject is triggered during gameplay, all its conditions are evaluated. If at

least one condition returns false, the action has no effect. If all conditions evaluate

to “true”, the action’s Consequence nodes take effect. Consequence nodes are rolled

out in a sequential order (while Conditions are unordered). A number adjacent to the

edge(figure 5.10) designates the order of a Consequence in the sequence. If two or more

Consequences have the same index, they come into effect random order resp. in the

order the implementation stores them. If no index is given, the default 0 is assumed.

Example 2: the Action “inc” in figure 5.8 has one Condition to check if the

Attribute “a” of the acting WorldObject is less than zero. If invoked, inc increments

the attribute by one.

.

5.3.5 Multiple Consequences

Some effects require Consequences which are applied simultaneously. For instance, a

diagonal move on a Chess board requires the alteration of both the x- and y- coordinate

of a game piece. If the changes are rolled out purely sequential, the following problem

occurs: Starting with the board configuration as seen in figure 5.9(a) the white player

would like to use his bishop on H3 to beat the black pawn on E6, resulting in the state

83

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

(a) (b)

(c) (d)

Figure 5.9: A horizontal move may cause unwanted side effects due to multiple attribute

changes.

seen in in figure 5.9(b). If the change of the column would be applied first, and the

movement between rows afterwards, the bishop virtually moves over tile E3 (as seen

in figure 5.9(c). While in this configuration this has no effect, figure 5.9(d) illustrates

what problem occurs if column- and row-assignments are switched: the bishop not

only eliminates the pawn, but also eliminates the black knight in the intermediate step.

To overcome this problem game designers may mark Consequences as simultaneous,

but this does not solve the problem of concurrent assignments on the computing level.

With a single computation unit, parallel executions are often modelled as sequential

operations in arbitrary order. However, in the worst case the chess movement problem,

as outlined above, may occur. Although this is a restriction imposed by the underlying

implementation, and might not be necessary when simultaneous variable assignments

can be made, e.g. π-calculus implementations (181). However, to be as independent

as possible from the underlying implementation as possible, we approach this problem

84

5.3 The SGDL Tree

two

=

a

(0)

0

0

+ =

b

(0)

1

1

Figure 5.10: Ordered Consequences can be denominated with indexed vertices.

in SGDL by attaching indices to the outgoing vertices of an Action node. Each Con-

sequence takes place in the order specified. The following example (figure 5.10) has

two Consequences (but no Condition). After the Attribute “a” is assigned a value, it

is also incremented. The indices at the vertices indicate the order they are supposed

to be applied.

5.3.6 Action as Consequences

Actions themselves can be Consequences of other actions: if an Action is triggered as

a Consequence, its Conditions are tested and then its Consequences are invoked before

any further Consequences of the original Action take effect. A common example is the

combination of an “attack” action, that subtracts health from a target, and a “kill”

action, that eliminates the target from the game if its health is below zero. The graph

for this example can be seen in figure 5.11.

Note: the special keyword SELF is actually not an attribute name but refers to the

WorldObject itself. Setting it to null (eliminating it) will delete the object from the

game (and therefore the map) after the Condition/Consequence evaluation is done.

5.3.7 Object Lists and Object Filter

The last node type concerns the combination and manipulation of multiple WorldOb-

jects at a time. ObjectList nodes combine several Attributes, that would return a

WorldObject to their parent, into one single node. Additionally, ObjectLists can have

additional Condition nodes as children which control which WorldObjects will be re-

85

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

Attack

− =

health

(1)

1

Kill

≥

0 health

(1)

=

SELF

(1)

null

Figure 5.11: Actions can be Consequences of other Actions. Their Consequences will be

only applied if the additional Conditions are met. The tree’s function can be described as:

“If a unit attacks a target, then decrease the target’s health by one and check if the target

has more than zero health points left. If that is not the case, then remove the target from

the game (assign null to it) and therefore kill it.”

86

5.4 Surrounding framework

L

MAP

0 1

MAP

0 0

(a) Combining two Worl-

dObjects

F

MAP ==

owner

I0

0

(b) Conditionally select from

a set of WorldObjects

Figure 5.12: Examples for using an ObjectList.

turned to the ObjectList’s parent, and therefore act as a filter. Figure 5.12 shows

examples of both node usages. Inside the subtree of an ObjectList a special identifier

I0 can be used for the object tested by the Objectlist node. Cascaded ObjectLists

provide additional indices I1, I2, . . . , In.

5.3.8 Winning Conditions

With the all node concepts established, we can specify the final component, the defini-

tion when a game ends. Attached to the SGDL root node are a number of Conditions,

that are checked after every player’s turn. While normally Conditions are tested against

WorldObjects on the map, winning conditions’ context vectors are filled with a player’s

state. Conditions may refer to this directly or other WorldObjects on the map via

a Special Function node MAP to determine if that player has won the game. If a

winning condition returns true, that player has one the game. Each winning condition

is tested against all players. Winning condition for specific players may be defined

by explicitly referencing their player id. Figure 5.13 shows two examples for common

winning conditions.

5.4 Surrounding framework

The game mechanics of a strategy game never exist on their own. So far we have

only described how SGDL (sub-)trees interact with WorldObject instances that are

passed into Conditions and Consequences. To provide additional structure necessary

87

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

SGDL

≥

score

(0)

100

(a) Testing if a player has achieved a score

of 100

SGDL

==

null F

MAP 6=

owner

I0

id

(0)

(b) Checking if all enemy units are removed

from the map

Figure 5.13: Two examples of winning conditions

for complex strategy games, the language also specifies several surrounding concepts

that are common in modern computer games.

5.4.1 Maps

Maps are the central game element of strategy games. Their purpose is to define

a spatial relation between units and other objects. Game maps are normally a two

(sometimes three-) dimensional data structure and are further classified as either con-

tinuous or tile based. Continuous maps are mostly used in real-time strategy games

and each object is located using real values. Tile based maps are more abstract and

divide their space into separate spaces, often in the form of squares or hexagons, and

sometimes in complex forms, e.g. continents in Risk. The current version of the SGDL

game engine only considers tile-based maps as it is primarily intended for turn-based

games. However, the language does not make any assumptions about the shape or type

of the map and this is handled in the implementation layer. What can be specified,

when referencing a WorldObject on the map, are coordinates. The most common are

x-coordinates and y-coordinates, but a hierarchical ordering in continents and coun-

88

5.4 Surrounding framework

a

MAP

0 0

(a) A SpecialFunction can be

used to access WorldObjects on

the map.

a

MAP

+

x

(0)

1

0

(b) Subtree to access a Worl-

dObject on the map using a dy-

namic Attribute.

create

· · ·
=

MAP

0 0

NEW

Class A

(c) Creating a new WorldObject.

Figure 5.14: Three ways of accessing a WorldObject on a map.

tries might also be possible. To access a certain WorldObject on the map we can use

a SpecialFunction node and let it act as a MAP1 function. Two ConstantAttributes

(or any other numeric Attribute) are used to provide the coordinates. Together with

a Property Node the tree shown in figure 5.14(a) references the attribute “a” of the

WorldObject at 0,0.

We can easily replace the Constant Attributes with something more complex. As-

suming that the map is rectangular, we can address the object east (i.e. adding one to

its x-coordinate) of the acting object as seen in figure 5.14(b). The same Special Func-

tion can be used to place WorldObjects on the map if used as an assignment target.

1The “ ” denotes a system function. Future versions might also include user specified routines.

89

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

Together with an Object Node set to NEW. The example in figure 5.14(c) creates a

new WorldObject of Object Class “Class A” at map tile (0,0).

Distances To determine the spatial distance between two tiles, SGDL provides a

second SpecialFunction DISTANCE which refers to another function of the under-

lying implementation. For instance, this could be the Euclidean distance or any other

distance function applicable to the map. The DISTANCE node takes two WorldOb-

jects as inputs and provides a numerical distance. The default implementation assumes

x- and y-coordinates and calculates the Euclidean distance. The relation between two

WorldObjects from the Context Vector can be determined as seen in figure 5.15(a).

This only works if two WorldObjects are involved in an Action. To simply calculat-

ing the distance between two tiles or a WorldObject, SGDL provides a third function

MAP TILE which references the tile itself at a given position. Therefore it is also

possible to calculate the distance of between two tiles, both unoccupied by WorldOb-

jects. The current implementation to MAP TILE is limited to two input nodes, i.e.

it does not support calculating the length of a path. On a rectangular grid map, the

example shown in figure 5.15(b) would evaluate to “1”.

Tile properties Like any other WorldObject, a map tile may have properties. This

is especially useful for modelling resources or other concepts that affect map tiles: e.g.

move actions could be slowed on swamp tiles. Like WorldObjects, properties of map

tiles can be accessed using a PropertyNode, but instead of using an ObjectNode as a

child, a SpecialFunction MAP TILE is used. Tiles are then treated like any other

WorldObject.

5.4.2 Game- and Player State

Like any other games, strategy games use variables that are not directly represented on

the map but form a context of gameplay. Hidden or abstract information is normally

stored in a set of global variables or auxiliary data structures. Examples range from

time of the day, to the weather conditions, score counters, and timers. We refer to

this as the “game state”, differentiating it from the objects that are on the map. We

further segment this into game- and player variables, where the latter hold values that

are only applicable for a certain player. So each player has his own score variable or a

set of resources he can dispose.

The SGDL framework provides the concept of game state and player state. Both

are a collection of Constant Attributes which designers can specify in the appropriate

90

5.5 Comparison to other Game Description Languages

node as seen in figure 5.2. The SGDL framework gives game designers the opportunity

to access these values like any other WorldObject. The game state will be created and

set to its default value upon game start, and can be accessed through a Property Node

without an Object Node. Additionally, the property name has GAME as a prefix, as

seen in figure 5.16.

Player State Although it would be possible to organise game variables for several

players simply using hierarchical names (e.g. player1.money and player2.money), we

specified also a “player state”. For each player, a copy of the player state template

will be made at game start. Property Nodes can be used to access a player’s state. An

additional numerical Constant Attribute can be used to determine a specific player. If

that is omitted, the current player’s state will be used.

5.5 Comparison to other Game Description Languages

After introducing all elements of SGDL, we would like to make a brief comparison be-

tween a few of the previously published game description language, namely Ludi (4.4.4),

Togelius and Schmidhuber’s fixed length genome (4.4.6), Angelina (4.4.5), and answer

set programming (ASP, 4.4.3). We would like to address a few paradigms as discussed

in section 5.1: range of games, verbosity, human-readability, syntax, and level of detail.

Ludi Ludi covers clearly a related range of games as SGDL games. As Ludi intends

also to express classic games such as Chess or Checkers, there is clearly an overlap with

SGDL. The minimal atom in Ludi (a “ludeme”) seems to encapsulate more behaviour

than a node in a SGDL graph. This makes a game definition in Ludi clearly more

human-readable, especially with complexer programs. It lowers also the verbosity of

the language. This however has impact on the locality of the language, as single ludemes

may change the gameplay significantly. The system relies on a library of known ludemes.

Additional behaviour must be coded, e.g. if the system knows a three-in-a-row ludeme,

but the game designer would like to express three-in-a-dashed-line concept the language

has to be extended. SGDL relies more on modelling behaviour on a lower level.

Fixed length genome The fixed length genome used by Togelius and Schmidhuber

covers only a small range of games and has clearly the most abstract representation

of all game description languages discussed here. This results in a very low human-

readability and knowledge of the experiment to interpret genomes. Behaviour however

is modelled on a very high level, giving the representation a very low verbosity.

91

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

DISTANCE

(0) (1)

(a) Determining the distance between two WorldObjects. The required attributes

depend on the map used, i.e. a WorldObject on a rectangular grid map will need x-

and y-attributes.

DISTANCE

MAP TILE

0 0

MAP TILE

0 1

(b) Measuring the spatial distance betweens two WorldObjects.

Figure 5.15: Examples of using the DISTANCE SpecialFunction

buy

>

GAME.money 0

· · ·

Figure 5.16: Accessing a game state variable in an Action. A Consequence will only be

evaluated if the global variable “money” is greater than zero. Like any other Condition,

SGDL trees imply that values are comparable. If “money” would be a string literal, our

implementation would generate a runtime error.

92

5.6 Summary

Angelina Angelina addresses a completely different sets of games than SGDL. The

arcade games relate more to the set of games expressed by the fixed length genome.

However, Angelina uses an XML format to express its games which makes the genomes

far more human-readable by trading off some verbosity. The level of detail is similar

to Ludi, much higher than the fixed length genome, but also much lower than ASP or

SGDL.

Answer Set Programming ASP is intended to express a similar set of games than

the fixed length genome or Angelina. The main differences is that it builds on a full

featured programming language (AnsProlog) which offers a high level of detail does to

single operators. Even though SGDL does not build on an existing language, it reaches

a similar degree of detail. The declarative programming differentiates it somewhat from

the other approaches presented. This, depending on the designer, have some impact

on the human-readability.

In comparison to the approaches presented above, SGDL covers a range of games

which only Ludi relates to. However, a general comparision seems possible. SGDL is

probably the most verbose language. This is due to its high level of detail, i.e. modelling

behaviour on the level of single operators. The human-readability may depend on the

designer’s preferences, as some people might prefer a textual representation over a

graphical one. This is especially true for complexer programs. We believe though, that

a graphical representation is more intuitive.

5.6 Summary

This chapter introduced a domain specific language for expressing strategy games me-

chanics, the Strategy Games Description Language (SGDL). We discussed its design

paradigms, introduced its basic concepts, and presented the different node types and

how to combine them into simple game rules. Furthermore, we introduced the ba-

sic concepts of the surrounding framework and how it stores data regarding the game

state. The chapter concluded with a brief comparison of SGDL to other Game De-

scription languages. The next chapter will present how SGDL may be set in practice

by demonstrating its use with a series of small example games.

93

5. THE STRATEGY GAMES DESCRIPTION LANGUAGE (SGDL)

94

Chapter 6

SGDL in Practice

This chapter presents how the SGDL framework was used to model various games.

Some of the games were the basis for the experiments described in chapter 10. Fur-

thermore, this chapter addresses another aspect of strategy games, map generation. A

map generator for one of our games, modelled in SGDL, is presented in section 6.2.

6.1 Example Games

This section will present the games that have been realised with SGDL for our experi-

ments. Each game builds on the previous one and increases in complexity. All games

were modelled manually, but used for several evolutionary computing experiments to

automatically determine the best values for various parameters and attributes. The

following therefore just describes the structure of games without concrete parameter

sets.

6.1.1 Simple Rock Paper Scissors

Simple Rock Paper Scissors (Simple RPS) is the smallest game realised, and simulates

the battle between two units on an abstract level. The game is loosely inspired by the

hand game “Rock Paper Scissors”. It features three different unit classes (“Class A”,

“Class B”, and “Class C”) with identical abilities, namely attacking another unit. An

attack simply reduces the enemy unit’s health by a strength value and costs one unit

of ammunition. The strength against other units is denoted as “attack A” etc. The

players take consecutive turns, and the player who looses his unit first looses the game.

Each ObjectClass has five attributes:

• ammo is the number of shots that can be fired

95

6. SGDL IN PRACTICE

Class A

attack A

attack B

attack C Attack A

Attack B

Attack C

Figure 6.1: Subtree of “‘Class A” of “Simple Rock Paper Scissor”

.

• health is the number of damage a unit can take before it is removed from the

game

• attack A denotes the attack strength against another WorldObject of Class A

• attack B [analogous for Class B]

• attack C [analogous for Class C]

The exemplary tree for Class A can be seen in figure 6.1. The “Attack A” action (and all

attack actions analogously) can be seen in figure 6.2. It can only subtract health from

a target object if the classes match, the target is not dead, and the acting object has

ammo left. The amount of health subtracted is determined by the appropriate “attack”

attribute. The winning condition was written in Java code and therefore not modelled

in SGDL. This is simply an anachronism from an early stage of the development of

SGDL, where winning conditions were not added yet.

6.1.2 Complex Rock Paper Scissor

Complex Rock Paper Scissor (Complex RPS) extends Simple RPS by a spatial compo-

nent. A 10x10 rectangular grid map was introduced and instead of one unit, a player

starts with three different units; each of one ObjectClass. Figure 6.3 shows an overview

screenshot. The rules remain the same: players take consecutive turns and the player

who looses all his units first looses the game. Additionally the concept of maximal and

minimal shoot ranges was introduced.

96

6.1 Example Games

Attack A

<

0

ammo

(0)

<=

0

health

(1)

==

Class A CLASSNAME

(1)

-=

ammo

(0)

1

-=

health

(1)

attack A

(0)

Figure 6.2: The attack action in simple Rock Paper Scissor. The child nodes model

(from left to right): a) attacker has more than zero ammo b) the target has more than zero

health c) the target’s class equals a specific class (referenced by class name “Class A”) d)

subtract one from attacker’s ammo e) subtract the attack value from the target’s health.

97

6. SGDL IN PRACTICE

The attack actions as seen in figure 6.2 were extended with the condition checks as

seen in figure 6.4 to model the range checks. At the same time the three ObjectClasses

were extended with the following attributes:

• x - the horizontal coordinate

• y - the vertical coordinate

• minimum range for shooting

• maximum range for shooting

Figure 6.3: A development screenshot of “Complex Rock Paper Scissors” with placeholder

graphics. One player starts on the right, the other player on the left. Each of the six tokens

represents a unit. Units with the same image (but different colour) are of the same unit

type.

6.1.3 Rock Wars

Rock Wars is a further extension of Complex RPS. We added more elements of real

turn-based games: map topologies and unit building. The game draws its name from

the “rocks” we added as passive objects, which simply serve as obstacles. Apart from

an x and y coordinate pair they have no attributes or any actions. Their purpose is

to hinder the movement of units, but they do not affect the attack actions. As the

go{North|East|South|West} actions used in complex RPS already contained a condi-

98

6.1 Example Games

&

≥

DISTANCE

(0) (1)

min range

(0)

≤

DISTANCE

(0) (1)

max range

(0)

Figure 6.4: Adding range conditions to attack actions. The left subtree checks that the

distance between attacker and target is greater than or equal to the minimum range of the

attacker and the right subtree compares the same distance if it is lesser than or equal to

the maximum attack range.

tion, that the target tile must be empty, no further modification was necessary in the

model except a new ObjectClass factory had to be added. An instance for each player

is placed on the opposing ends of a map. It has no attributes besides x and y but

three create actions, one for each unit class. The create action for a factory consists

of three parts: the cost condition, the condition of a free spawn tile, and finally the

consequence for the actual unit creation. Figure 6.6 shows the complete action for a

factory to spawn a new unit. With no starting units, the objective of the game now

includes building the best unit combinations with a given budget of money to defeat

the enemy units.

With Rock Wars we introduced the game- and player state (as described in sec-

tion 5.16. The game state remains unused in this example, but the player state holds

three variables for each player: a money indicator as a limiting factor for unit creation,

and an x/y value, specifying the tile where the player factory would create a new unit.

This was necessary as we used a procedural method to randomise the locations of the

rocks on the map. On rare occasions this would place a rock at the factory spawn point,

making it impossible for a player to create any units. Instead, we manually specified

the location of the factory the new units’ spawn point and excluded that location and

the surrounding 3x3 area from the rock placement to ensure a clear starting location.

Figure 6.5 gives an overall overview of the game.

99

6. SGDL IN PRACTICE

Figure 6.5: Screenshot of “Rock Wars”. The left part of the picture shows the factory of

player one and a few created units; the right side of the screen shows respective area and

units for player two. The screenshot also illustrates the rocks cluttered across the map.

100

C
re

at
e

A

=
=

n
u
ll

M
A

P

sp
aw

n
X

C
U

R
R

E
N

T

P
L

A
Y

E
R

sp
aw

n
Y

C
U

R
R

E
N

T

P
L

A
Y

E
R

>
=

cl
as

s0
co

st

G
A

M
E

S
T

A
T

E

m
on

ey

C
U

R
R

E
N

T

P
L

A
Y

E
R

=

M
A

P

sp
aw

n
X

C
U

R
R

E
N

T

P
L

A
Y

E
R

sp
aw

n
Y

C
U

R
R

E
N

T

P
L

A
Y

E
R

0

−
=

m
on

ey

C
U

R
R

E
N

T

P
L

A
Y

E
R

cl
a
ss

0
co

st

G
A

M
E

S
T

A
T

E

0

=

ow
n

er

M
A

P

sp
aw

n
X

C
U

R
R

E
N

T

P
L

A
Y

E
R

sp
aw

n
Y

C
U

R
R

E
N

T

P
L

A
Y

E
R

ID

C
U

R
R

E
N

T

P
L

A
Y

E
R

1

F
ig

u
re

6
.6

:
T

h
e

d
et

a
il

ed
su

b
tr

ee
fo

r
a

“
C

re
a
te

”
a
ct

io
n

in
“
R

o
ck

W
a
rs

”
.

101

6. SGDL IN PRACTICE

6.1.4 Dune 2

Dune 2 was our first approach to model an already published and commercially sold

game. Our focus was to test if it was possible to model the complete game mechanics,

ignoring the changes to playing experience and balance this might impose. Dune 2

was originally a real-time strategy game published by Westwood in 1993. It is often

considered the first modern real-time strategy computer game.

The original game is loosely based on Frank Herbert’s novel Dune (182) where

different parties fight over the control of a desert planet called Arrakis which is the

only planet in the universe where the substance Spice can be harvested. While the

novel spins a narrative around the substance Spice, the game reduces Spice to resource

simply used to run a player’s economy: special units (called “harvesters”) roam the

map, and collect Spice that has been placed on the map before game start. Upon the

harvester’s return the collected spice is directly converted to money which in return the

player can use to construct new buildings in his base or manufacture new units to wage

war against his enemies on the map. We recreated this game mechanic in a simplified

version of the game (as seen in figure 6.7). To place the Spice in an interesting way

on the map, we used our map generator from our paper (183) published in 2012 using

cellular automata. Section 6.2 will briefly present this approach.

6.2 Interlude: “Spicing up map generation”

Although the actual Strategy Description Language does not cover game elements be-

sides game mechanics, the SGDL framework also features aspects that are needed to

actually play the expressed games. For example, the integrated agents will be presented

in chapter 7. In conjunction with our version of Dune II we would like to add the im-

plementation of a map generator, that was published in 2012, to generate interesting

maps (183). The implementation was specific to that game, but could be easily adapted

to others. This experiment was conducted aside from our main research of generating

strategy game mechanics, and is therefore presented in its own section.

Togelius et al. already explored the possibilities of a search-based map generator

for the real-time strategy game StarCraft (120). They recognised that devising a single

good evaluation function for something as complex as a strategy game map is any-

thing but easy, so the authors defined a handful of functions, mostly based on distance

and path calculations, and used multi-objective evolutionary algorithms to study the

interplay and partial conflict between these evaluation dimensions. While providing

insight into the complex design choices for such maps, it resulted in a computationally

102

6.2 Interlude: “Spicing up map generation”

Figure 6.7: Dune II in the SGDL engine.

103

6. SGDL IN PRACTICE

expensive map generation process. Furthermore, problems with finding maps that are

“good enough” exist in all relevant dimensions. The map representation is a combi-

nation of direct (positions of bases and resources) and indirect (a turtle-graphics-like

representation for rock formations), with mixed results in terms of evolvability.

Our approach is less complex, and based on an idea used by Johnson et al. for

generating smooth two-dimensional cave layouts using cellular automata (CA) as pre-

sented in section 4.1.4. Their idea supports the particular design needs of a two-

dimensional endless dungeon crawler game (129). Our map generator consists of

two parts: the genotype-to-phenotype mapping and the search-based framework that

evolves the maps. The genotypes are vectors of real numbers, which serve as inputs

for a process that converts them to phenotypes, i.e. complete maps, before they are

evaluated. The genotype-to-phenotype mapping can also be seen as, and used as, a

(constructive) map generator in its own right. (The relationship between content gen-

erators at different levels, where one content generator can be used as a component of

another, is discussed further in (184). The genotype-to-phenotype mapping is a con-

structive algorithm that takes an input as described in the following and produces an

output matrix o. Based on tile types of the original Dune 2, the elements of o can

assume the value 0 = SAND, 1 = ROCK, and 2 = SPICE. The matrix o is then later

interpreted by the SGDL game engine into an actual game map.

The input vector is structured as followed (mapSize refers to the map’s edge length):

• n the size of the Moore-neighbourhood [1, mapSize2]

• nt the Moore-neighbourhood threshold [2,mapSize]

• i the number of iterations for the CA [1, 5]

• w00..w99 members the weight matrix w for the initial noise map [0, 1]

• s the number of spice blooms to be placed on the map [1, 10]

The generator starts with creating the initial map based on the values w. The 10× 10 ma-

trix is scaled to the actual map size and used as an overlay to determine the probability

of a map tile starting as rock or sand. For each iteration in a CA is invoked for each map

tile to determine its new type. If the number of rock tiles in the n-Moore-Neighbourhood

is greater or equal than nt the tile is set to ROCK in the next iteration.

The next step is the determination of the start zones, where the players’ first build-

ing will be placed. We always use the largest rock area available as the starting zones.

The selection is done by invoking a 2D variant of Kadane’s algorithm (185) on o to find

the largest sub-matrix containing ones. To prevent players from spawning too close to

each other, we invoke Kadane’s algorithm on a sub-matrix of o that only represents the

i top rows of o for one player, and only the i bottom rows for the other player. We let

104

6.2 Interlude: “Spicing up map generation”

Figure 6.8: Screenshot of the generator application. The right pane lets the user input a

seed matrix directly, or observe the result of the evolution. The middle pane can be used

to either invoke the generator directly (“Iterate”) or start the non-interactive evolution

(“Evolve”). The other buttons allow the user to go through the map generation step-by-

step. The left pane shows a preview of the last map generated: yellow = sand, gray =

rock, red = spice. The blue and green dot symbolise the start positions.

i run from 8 to 2 until suitable positions for both players are found. This operation

ensures that one player starts in the upper half of the map and one in the lower. It also

restricts us to maps that are played vertically, but this could be changed very easily. At

this step we don’t assert that the start positions are valid in terms of gameplay. Broken

maps are eliminated through the fitness functions and the selection mechanism.

The last step is the placement of the spice blooms and filling their surrounding areas.

Since Kadane’s algorithm finds sub-matrices of ones, we simply clone o and negate its

elements with onm = 1 − onm; whereas onm is the m-th member of the n-th row of o.

We use the computed coordinates to fill the corresponding elements in o with spice.

In order to make the fields look a bit more organic, we use a simple quadratic falloff

function: a tile is marked as spice if its distance d from the center of the spice field (the

bloom) fulfils the condition 1
d2 ≥ t. Where t is the width of the spice field multiplied

by 0.001. We created a simple frontend application to test the generator. A screenshot

with a basic description can be seen in Figure 6.8.

The genetic algorithm optimises a genome in the shape of a vector of real-numbers,

using a fitness function we will describe in the following. Since a desert is very flat,

there exists almost no impassable terrain, hence choke points (as introduced in (120))

is not a useful fitness measure. The challenge of choke points was instead replaced by

105

6. SGDL IN PRACTICE

the assumption that passing sand terrain can be rather dangerous due to sandworms.

Furthermore, it should be ensured that both players have an equally sized starting

(rock) zone and the distance to the nearest spice bloom should be equal. All values

were normalised to [0, 1]. To summarise, the following features were part of the fitness

function:

• the overall percentage of sand in the map s

• the Euclidean distance between the two starting points dAB

• the difference of the starting zones’ sizes ∆AB (to minimise)

• the difference of the distance from each starting position to the nearest spice

bloom ∆ds (to minimise)

Apart from these criteria a map was rejected with a fitness of 0 if one of the following

conditions was met:

• There was a direct path (using A∗) between both starting positions, only travers-

ing rock tiles. (Condition c1)

• One or both start positions’ size was smaller than a neighbourhood of eight; and

no reasonable space for building a base would be available. (Condition c2)

The resulting fitness function was:

fmap =

0 if c1 ∨ c2,

s+dAB+(1−∆AB)+(1−∆ds)
3 else

(6.1)

In other words: the average of the components if the map passed the criteria, 0 other-

wise.

With appropriate parameters, we were able to generate several maps that resembled

the style of the original Dune 2 maps. From an aesthetic point of view, the maps look

interesting enough to not bore the player and remind them of the original Dune 2 maps,

while still presenting fresh challenges. Three example maps can be seen in figure 6.9

6.3 Summary

This chapter presented a few complexer games expressed in SGDL. We also introduced

the game Rock Wars which will form the base for games used in the experiments

presented in the following chapters. Rock Wars is simple turn-based strategy game

which features some basic elements of all strategy games: unit production, tactical

combat, a map with obstacles, and a simple economic model. We also presented an

outlook on future games and the extended use of map properties with the discussion of

106

6.3 Summary

(a) 0.76 (b) 0.79 (c) 0.83

Figure 6.9: Three examples of generated Dune II maps, captioned with their fitness

values. All three maps were created through the evolutionary process. The yellow areas

denote sand, the grey areas are rocky terrain where the players can build on, and the red

areas represent “Spice”, a resource that players may harvest and use as currency.

a map generator for a version of the popular real-time strategy game Dune 2 modelled

in SGDL.

In the following, we will now shift the focus on the automatic generation of game

mechanics using several approximations of “interesting” gameplay for an evolutionary

algorithm. All generated games are expressed in SGDL. But before introducing the

experiment setup, another component is introduced that enables us to make use of

simulated gameplay: the SGDL agent framework.

107

6. SGDL IN PRACTICE

108

Chapter 7

Automated Gameplay

This chapter presents a different part of the SGDL framework, the component of ar-

tificial general gameplayers. We present a series of agents based on different tech-

niques from the field of machine learning, and set them into context with the example

games 6.1 and their relative performance. Ultimately, the agents were tested as oppo-

nents for human players in an online experiment. The resulting data is presented in

section 7.4. This chapter presents work of a secluded project done and and previously

published by Nielsen and Jensen as part of the overall SGDL project (47, 186).

The utilisation of simulated gameplay for fitness evaluations of strategy games re-

quires agents which are capable of playing said games at an adequate skill level like

a human player would. Optimally, agents would be able to imitate playing styles of

different playing preferences. In this section, we address the problem of general strat-

egy game playing. This implies agents which can proficiently play a wide variety of

strategy games and scenarios, not just a single game or scenario. (The definition allows

the agents some time to adapt to the particular game and scenario.) The aim is to

create agents which can play as many different strategy games as possible, rather than

a collection of useful domain specific “hacks”. At the same time, the range of games

our agents are supposed to handle is considerably more constrained than the range of

games expressed by the Stanford GDL, used in the General Game Playing Competi-

tion (172); all of the games (also referred to as models hereafter) considered in this

section are variations of Rock Wars, as presented in section 6.1.

Six different agent architectures (plus variations) are implemented. These are based

on techniques that have been successfully applied on various forms of game-related

AI problems: playing board games (MinMax, Monte Carlo Tree Search), autonomous

agent control (Neuroevolution, potential fields), commercial video game AI (finite-state

109

7. AUTOMATED GAMEPLAY

machines) and strategy selection (classifier systems). Two different random agents are

also implemented for comparison. For those architectures that are based on some

form of learning algorithm, relatively extensive training is performed for each agent on

each model. We ensured, that each architecture was provided with an equal amount

of training time. It should be added, that a heuristic described in section 9.2 was

excluded from the experiments, because all agents were able to defeat it constantly.

Said heuristic was also created before our agent tests were concluded, hence its main

purpose was to be a surrogate until the agent development was finalised. Then, the

random agents provided a sufficient baseline.

Two different kinds of evaluation of the agents were undertaken. The first was an

extensive playout of every agent against every non-learning agent on all of the defined

models. From this, the relative performance (in terms of winning/losing games) of

trained agents against each other can be gauged. The second evaluation form was

interactive: human players played against at least two different agents each, using

different game models, and answered a short survey about their preferences between

those agents. From this we can gather both objective data (which agent was best

against human players?) and subjective (which was best-liked?) about these agents’

interactions with humans.

The questions we are addressing in this section, and which we claim to be able to

answer at least partially, are the following:

• Is it possible to construct agents that can proficiently play not just one but a

range of different strategy games?

• How can we adapt some specific AI techniques that have been successful on other

game-related problems to work well with strategy games?

• Which of these techniques work best in terms of raw performance?

• Which of these techniques make for the most entertaining computer-controlled

opponents?

7.1 The game, the agents and the assigner

The overall principles taken from Rock Wars (as explained in section 6.1.3) remain the

same. Each player starts with a non-moveable building which possesses the ability to

spawn new units. All units take 1 turn to produce. Each unit costs a certain amount

of a resource based on the SGDL model. The players’ resources and the unit costs are

tracked within the SGDL game state. The template for this game state is read from the

loaded SGDL model, i.e. the unit costs and starting resources depend on the loaded

110

7.1 The game, the agents and the assigner

model. Each unit has one action per turn, and may select any possible action defined

for its class. One of the possible actions could be to move to an unoccupied map tile

or shoot at an enemy unit. If a unit loses all its health points it is removed from the

game. If a player loses all his units (besides his factory) and has no resources left to

produce new units, his opponent wins the game. Should the game take longer than 100

turns, the game is a draw.

The agents in the study were based on a hierarchical agent framework named

the “Commander framework” based on the Intelligent Agent Architecture by Rus-

sel and Norvig (187), as can be seen in figure 7.1. The framework consists of a

commander entity on the highest logical layer, and sets of unit and building entities.

Objects in a game belonging to an agent are linked to these sets of unit and building

entities in the framework, while the commander entity is a strategic entity only. Thus

the framework is separated in a higher level layer, called the strategic layer, and a lower

level layer, called the unit layer.

Agent/Player

Decider

Environment

Percepts

Actions

Commander

Units Buildings

State

Actuator

Figure 7.1: The Commander framework used for the agents in the study.

The framework was designed such that it can be used by game tree based techniques

as well as multi-agent techniques. This is possible by the two-way communication

between all types of entities, which allows either a commander to control units and/or

buildings, units and buildings to act autonomously, or any other combination necessary.

The communication with the SGDL game engine is maintained through two utility

systems named State and Actuator. Because the SGDL model of a game consists of

an unknown quantity of percepts and actions with unknown properties, it is beneficial

for non game tree based techniques to use a system that categorises percepts and

actions into sets of known quantities and properties. An agent may test if a specific

action is possible at any time during his turn by testing its conditions. The SGDL

framework also supports supplying all possible actions for a certain unit. This is done

through testing all the conditions of all of the actions that object could theoretically

111

7. AUTOMATED GAMEPLAY

invoke. Actions which require an additional object (target object) are tested with

all objects that are also on the map. Because of a pre-set constraint, no action in

our games requires more than two objects (acting object and target object) we can

limit the search to one extra object. Otherwise conditions would have to be checked

against all permutations of objects on the battlefield. Although an agent with more

domain knowledge might apply a faster and more efficient way to select actions, the

agents described in this chapter rely on the set of possible actions created through a

“brute-fore” search method. The framework simply tests all WorldObject and actions

combinations, and reports the possible actions back to the agent. If an agent submits

an action to the framework that is not possible, it would simply get denied.

The State system consists of a set of general information that captures a subset of

the percepts thought to be the minimum amount of information necessary for agents

to react meaningfully to the game environment. Included in the set of states are the

type of class of the unit, its health, the distance, angle and relative power of the nearest

three opponents, the distance and angle of the nearest two obstacles and the distance

and angle of the opponents building. The Actuator system uses a one ply game tree

search in order to determine the effect of all given actions, and categorises them into

a finite set of actions with known effects. Included in the set of actions are the attack

actions that do the most damage to opponents, actions that kill opponents and actions

that cause movement in one of eight possible directions. The disadvantage of these

systems is that information is no longer complete given the categorisations made, but

they decrease the search space significantly; a requirement for many techniques to do

meaningful searches.

Another utility function was developed for commander entities, which can provide

additional information in terms of a relative measurement of the power of unit objects

relative to each other and can assign orders to unit entities on the lower layer. Relative

power information is gained through short simulations of the unit object types against

each other, where power is based on the steps it takes for one to kill another. The order

assignment is done through a neuroevolutionary approach based on NEAT (165). A

bipartite graph that consists of the set of units belonging to an agent are fully connected

to a set of units that belong to the enemy. Each edge of the bipartite graph is weighted

by a neural network evolved through NEAT with a set of information relevant to each

edge, i.e. distance, health and relative power measurement between the units connected.

Assignments are determined by hill climbing, where the highest valued edges of the

bipartite graph are selected for each unit that requires an assignment.

To test the agents’ flexibility with different SGDL models, five distinct models were

112

7.2 Agents

created to represent different strategy gameplay aspects. As seen in table 7.1, the

models were named chess, shooter, melee, rock-paper-scissor (RPS) and random. All

models are variations of Rock Wars (as described in section 6.1).

• Rock-paper-scissors (RPS): a balanced strategy game where each unit can do

heavy damage to one other class of unit, light damage to another and no damage

to the third. This mirrors a popular configuration in strategy games where tanks

are effective against foot soldiers, foot soldiers against helicopters and helicopters

against tanks. All units have a movement of one.

• Melee: Similar to the RPS model, but all units have an attack range of one,

forcing them to chase and entrap each other.

• Shooter: Perhaps to the model that is most similar to a standard strategy game.

Shooter has 3 different classes, a sniper, a soldier and a special operations agent

(special ops). The sniper has high range, medium damage and low health, the

soldier has medium range, low damage and high health and the special ops has

low range, high damage and medium health.

• Random: Units are only able to move one step, and the cost, health, ammo and

damage of each class against all others is randomised for every game.

• Chess: A simplified chess game with unit movements and capabilities inspired by

the rook, knight and bishop pieces.

The properties of all the models used are summarised in table 7.1. There was a limit

of 100 turns per game and a limited amount of units which could be built based on their

cost. The players started with an equal random amount of money that could be spent

on units. The games are turn based, and there is no fog of war. The models described

above determine the rules of each game. Any action, be it movement, shooting or

similar, constitutes a turn, and so does doing nothing. Units are symmetric for the

players in all games regardless of models and maps.

7.2 Agents

We created eleven agents based on several different techniques as presented in table 7.2.

The non-learning agents’ main purpose was to serve as training partners for the evolving

agents, but they were also included in our experiments. The following sections will cover

the details of each agent implemented.

113

7. AUTOMATED GAMEPLAY

Table 7.1: Unit properties for SGDL models

SGDLs

Unit properties Chess Shooter Melee RPS Random

Random cost X × X X X

Random health X × X X X

Random ammo X × X X X

Random damage X × X X(special) X

Random range × × × X X

Movement note Special 1-step 1-step 1-step 1-step

Table 7.2: Agents in the study

Agent name Purpose

Random Opponent in agent test

SemiRandom Training, Opponent in agent test

FSM Training, Opponent in agent test, Human play testing

NEAT Agent versus Agent testing, Human play testing

NEATA Agent versus Agent testing

MinMax Agent versus Agent testing, Human play testing

MCTS Agent versus Agent testing, Human play testing

PF Agent versus Agent testing, Human play testing

PFN Training

XCS Agent versus Agent testing

XCSA Agent versus Agent testing

7.2.1 Random action selection

Two agents relying on random action selection were created in this study to train the

evolving agents and to provide a performance baseline. Both agents are capable of

fitting into a multi-agent framework, as the logic executes on the level of the individual

unit and not at a strategic level. These two agents are the following;

• Random agent

• SemiRandom agent

The Random agent selects a random action from the set of possible actions given by

the Actuator, resulting in random behaviour. The SemiRandom agent is designed to

move randomly but use the best available offensive action, thus making it an offensive

114

7.2 Agents

but largely immobile opponent. The agent uses the Actuator as well, which guarantees

that the most effective actions in the game are used. As can be seen in figure 7.2, a

finite-state automaton or finite-state machine (188) is used to determine the action to

perform.

s0start s1

a0 m0

k

⊥

f
⊥

Figure 7.2: Finite-state automata of the SemiRandom agent units

7.2.2 Finite-state machine

Similar to the random agents, the finite-state machine (FSM, as described in sec-

tion 4.3.2) agent was created to provide a performance baseline and a training partner

for other agents. It utilises a finite state machine architecture with movement selection

based on a local breadth first search. Figure 7.3 shows the structure of the automaton

for the units, where the Actuator is used for action selection analogous to the random

agents. The FSM agent is an better opponent than the Random agent, but it requires

hand-coded domain knowledge about the game model.

s0start s1 s2 s3 s4

a0 a1 m0 m1

kt

⊥

ko

⊥

ft

⊥

fo

⊥

bt
⊥

Figure 7.3: Finite-state automaton of the FSM agent’s units

Congruent to the SemiRandom agent, an ordered sequence 〈s0, . . . , s4〉 of transi-

tional states is traversed. Unlike the SemiRandom agent, the FSM agent requires a

hostile target for each individual sub-agent in order for a search to be successful; it

is also used for attack selection as the target is prioritised. The accepting states are

{a0, a1,m0,m1}, and are given by the Actuator. Since the FSM agent favours a tar-

geted unit, the kill and attack conditions k and f are subdivided into kt, ko and ft, fo

where t is the target, and o is any other unit. The breadth-first search is designated as

115

7. AUTOMATED GAMEPLAY

bt, where the bt condition is true if the breadth-first search is able to find a path towards

the target. In this case the accepting state m0 selects the first movement action which

leads along this path.

The breadth first search is local because it has a limited amount of movement

actions that can be searched; an expansion limit. In order for the search to be effective,

a distance heuristic was applied on the ordered sequence used for expansion of moves

in the search. When the limit has been reached the search terminates and the action

with the shortest distance to the target is executed.

7.2.3 Neuroevolution of augmenting topologies

The Neuroevolution of Augmenting Topologies (NEAT, as described in section 4.3.4)

agents are based on the evolutionary algorithm for neural networks developed by Stan-

ley and Miikkulainen (165). This algorithm has previously been used with success for

evolving agent controlling neural networks in, but not limited to, shooter games and

racing games. The technique is a form of topology and weight evolving artificial neural

network, such that it not only optimises weights in a neural network, but also con-

structs the network structure automatically via artificial evolution. Within the NEAT

agents, action selection is based on an artificial neural network that has been trained

through machine learning using evolution. A fitness function evaluates the performance

of genomes in a population, and the fittest members are subsequently selected for the

creation of new members by combining their genetic information through a cross-over

genetic operator (189, 190).

Given the nature of artificial neural networks which can approximate any function

given an arbitrary large network (191), and a topology which evolves to a functional

structure, the agents are able to learn general gameplaying depending only on the

fitness function. However, in this implementation the State and Actuator utilities were

used to simplify and normalise the number of inputs and outputs. This means that the

technique operates on a subset of the actual state and action space of the games, as

was discussed in section 7.1.

The following two agents have been created that use an artificial neural network

evolved through NEAT:

1. NEAT agent (Neuroevolution of Augmenting Topologies agent)

2. NEATA agent (Neuroevolution of Augmenting Topologies agent with Assigner)

The fitness function used for the successful NEAT agent - out of several investigated

in the study - can be seen in equation (7.1). Here w is the amount of wins, l is the

116

7.2 Agents

amount of losses, and d is the amount of draws. Each genome is tested in six games

against three opponents, and evaluated using this function. The function was made to

force the agent into avoiding draw games and prioritise winning. However, its behaviour

is consistently hesitant to pursuing opponents, and it instead waits for the opponent

to approach.

fNEAT (ai) =
w

w + l + d
(7.1)

Several fitness functions were investigated, using more information than just the

winrate as above, such as including a normalised distance measure to encourage a be-

haviour which engages opponents more; a flaw of the above fitness measure. However,

the winrate decreased when using these information additions, even though the be-

haviour of the agent became more as desired in that it would aggressively pursue the

opponent. The problem might be caused by conflicting objectives; pursuing seems to

counteract its ability to win, i.e. the agent sends units on suicide missions. Equa-

tion (7.1) received the largest amount of victories, and was thus chosen for training.

The NEATA agent has one variant which can be seen in equation (7.2). Here s

is the number of successful orders carried out by units given out by the Assigner (see

section 7.1), b is the number of kills that were not given by orders and q the number

of failures to perform orders, e.g. the death of a friendly unit. It is normalised to the

number of units which have received orders denoted by u.

fNEATA(ai) =

∣∣∣∣∣s+ b
4 −

q
4

u

∣∣∣∣∣ (7.2)

The function drives the agent to evolve a behaviour that can successfully kill the

hostile unit which has been designated as a target, and potentially kill any other hostile

unit it encounters on its way. Because of the negative value given for a failure, it also

attempts to avoid destruction while carrying out the orders.

7.2.4 MinMax

The MinMax agent is based on the classic MinMax algorithm with alpha-beta prun-

ing (187), which is one of the simplest and most popular algorithms for playing games

and which has achieved considerable success on board games with low branching factors,

like Chess and Checkers. It has been previously described in section 4.3.1.1.

When implementing game tree search-based agents, it was decided that every branch

in the search tree represents a set of actions, one action for each friendly moveable unit.

We will refer to such a set as a MultiAction in the following.

117

7. AUTOMATED GAMEPLAY

Both game tree agents run in the Commander-Structure within the Agent frame-

work as seen in figure 7.1. After a search has been executed, the best MultiAction is

determined and its actions are distributed to the units. Neither the MinMax nor the

Monte Carlo Tree Search (MCTS) agent (presented in the following subsection) use

State or Actuator as the algorithms search ahead through potential actions.

Implementing MinMax with alpha-beta pruning into an agent required the modi-

fication of the algorithm as its runtime complexity grows rapidly with the branching

factor and depth of the tree. Since the amount of units and actions are unknown in

the model, a limit had to be placed on the amount of MultiActions possible. With-

out a limit, too many MultiActions could cause the agent to play poorly or become

dysfunctional.

To limit the MultiActions, depth first search (DFS) is performed on a tree with

moveable units and actions. Refer to figure 7.4 as an example, where Ux is moveable

unit x, and Uxy is its action y. The DFS is limited to only choose from the child nodes

of its current best choice, starting from the root. For example, should the DFS choose

U1attack over U1flee, it would then have to choose between U2attack and U2flee. When a

leaf is found, the MultiAction (built from path of actions selected from root to leaf) is

saved, and the DFS moves one step back towards the root and selects again.

To help guide the selection of MultiActions, a heuristic is needed to evaluate how

advantageous a game state for an agent is. The heuristic used is the same board

evaluator used within MinMax when a maximum depth is reached. Constructing a

heuristic for changing models proved to be a challenge as units in class 1 might have

different actions and attributes in different SGDL models. A static heuristic would

be infeasible, as the parameters and actions highly affect a unit’s effectiveness, and

instead a neural network was evolved using NEAT with the inputs: the health ratio

between friendly and hostile units and the average euclidean distance to nearest enemy,

weakest enemy, friend and enemy building. The single output of the network is how

favourable the board configuration is. The neural network was evolved by evaluating

its performance based on its win rate against a set of test agents of varying behaviour.

To help MinMax predict the actions of the enemy, even without units currently on

the board, the buildings and their actions had to be implemented in the tree seen in

figure 7.4. This would further increase the amount of MultiActions if every action of

the building is represented. It was therefore chosen to limit the buildings’ actions to

one. The unit produced in the search tree would be decided randomly (see figure 7.5).

118

7.2 Agents

U1

U2 U2

U1attack

U2attack U2flee

U1flee

U2attack U2flee

Figure 7.4: Action tree used to find MultiActions, performed at each node in the search

tree.

U1

U2

Building Building

U2

Building Building

U1attack

U2attack U2flee

U1flee

U2attack U2flee

U2 U2 U2 U2

Figure 7.5: Action tree illustrating the use of buildings. The building nodes are allowed

only one child each to limit the complexity.

7.2.5 Monte Carlo Tree Search

The Monte Carlo Tree Search (MCTS, as described in section 4.3.1.2) agent is based on

the MCTS algorithm, which has recently seen considerable success in playing Go (144).

Even though MCTS is known for handling trees with large branching factors, the

branching factor of most SGDL models is drastically higher than Go. Considering this

issue, the MCTS agent was implemented with the same MultiAction filter as the Min-

Max agent. Once MCTS was implemented, it could be observed that the algorithm

only produced 100-150 Monte-Carlo simulations per second due to the computational

overhead of cloning in Java. Part of this problem is caused by our näıve implementa-

tion where the whole gamestate (including map) is cloned for every node. As a solution

to this, MinMax’s board evaluation function was used instead of the play-out phase.

Retrospectively, a (potentially better) solution would have been an adaptive cloning

119

7. AUTOMATED GAMEPLAY

mechanics that only records the object that have changed based on an action. How-

ever, the regular play-out outcome zi of simulation i is replaced with a state value

approximation, which is backpropagated towards the root as normal.

Different exploration policies, as described in section 4.3.1.2 have been tested with

our agent: MC-RAVE produced the highest win rate with k-value of 10. A pattern

emerged during the experiments. UCT-RAVE (c = 0.1) scored a worse win rate than

MC-RAVE against FSM (38.95% vs. 45.96%), SemiRandom (32.63% vs. 37.89%) and

Random (56.49% vs. 66.14%) with p-values 0.05, 0.16, and 0.02. For the MCTS agent,

UCT (c = 0.1) performed worse than UCT (c = 0). When MCTS iterations were forced

to explore, rather than focusing on the early best looking child nodes, the win rate was

decreasing. This is most likely caused by either a too low iteration count and/or the

use of a board evaluation function, replacing the regular play-out phase. If the reason

is a too low iteration count, giving the algorithm more time to think (more than one

second) would increase the iterations and as a result reward the act of exploring child

nodes of less immediate interest. On the other hand, raising the time constraint to

more than a second is undesirable, as it affects the experience of a human player in

a negative way; even though we are only considering turn-based games. Replacing

the playout-phase with a neural network evolved using NEAT, might affect the Monte

Carlo-value by setting it close to its exact value even after only a few iterations - and

exploration would therefore become obsolete.

7.2.6 Potential fields

The potential field (PF) agent developed in this chapter is similar to the multi-agent

potential field approach which has recently shown good performance in some real-time

strategy games (11, 192, 193). The potential of a point on the map of the game is

expressed as in equation 7.3, where P is a set of potentials and w(pn) is a function

that maps a weight to potentials and pheromone trails; inspired by the behaviour of

colonies of insects. Potential functions take a distance from the x and y variables and

the position of the potential pi using the euclidean distance. A pheromone trail is given

as k, which is a trail of pheromone left by each unit, where each individual pheromone

is weighted inside a pheromone function, such that they decrease in strength over time.

As such, they serve as a negative trail of potentials with decreasing effect, and forces

the units to move in paths not previously taken. There is a potential for each object

on the map which contains the position of the object, and additional input variables

not given in equation 7.3 that apply specifically for the various potentials depending

on their purpose.

120

7.2 Agents

f(x, y) =

|P |∑
i=1

(pi (d)w(pi)) + (k(x, y)w(k)) (7.3)

By using this formula to calculate the potential of a point, it is not necessary to

calculate the global field of the map. Each unit contains its own potential field, which

is calculated for the legal moves that it can use to make in its turn, and in order to

keep the pheromone trail local to the unit.

phostileunit(d) =

(
|m−d|
m

)2
power, if power > 0;

−
(
|m−d|
m

)2
1
2 , otherwise.

(7.4)

As there is a potential for each object, and given that there are different types of

objects, multiple potential functions such as the one in equation (7.4) were formulated.

The above function creates a potential for hostile units, where m is the maximum

distance on the map, d is the distance between the sub-agent and the hostile unit,

and power is the relative power measure given by the Assigner utility. Various other

functions are given for friendly units, buildings obstacles etc.

An additional agent named PFN with a negative sign in equation (7.4) was used

for training, as it would avoid enemy contact and require the agents trained to learn

how to give chase.

7.2.7 Classifier systems

Another two agents were implemented based on eXtended Classifier Systems (XCS) (194):

a regular XCS agent and a XCSA (eXtended Classifier System using Assigner) agent

using the Assigner for orders. Both agents operated within the units and did not use

the Commander entity in the Commander Architecture as seen in figure 7.1. All units

for both agents shared the same XCS structure, resulting in shared information about

the environment.

The XCS classifier system builds on Holland’s Learning Classifier Systems (190)

(LCS) which is a machine learning technique that combines reinforcement learning

and evolutionary computing. A classifier system creates rules through evolutionary

computing and tries to predict the external reward by applying reinforcement learning

through trial and error. LCS changes the fitness of the rules based on external reward

received, while XCS uses the accuracy of a rule’s prediction.

To adapt to changing SGDL models, the XCS structure was slightly modified. In

Wilson’s XCS a covering occurs when the number of classifiers in the Match set is below

121

7. AUTOMATED GAMEPLAY

a threshold. Following Wilson’s advice by populating through covering, setting such

a threshold can be difficult with changing SGDL models, as the number of actions is

unknown. A low threshold resulted in the Match Set filling up with move actions, as

attack actions were met later in the game when opponents were engaged. The threshold

was changed to force the XCS structure to have at least one classifier for each possible

action in the current environment. In some SGDL models, unit attributes changed

over different games, therefore classifiers representing illegal moves are removed from

the Match Set.

To reward the Action Sets, the XCS agent had to wait for the game to end, in order

to receive a won, draw or loss feedback from the game. All Action Sets a were then

rewarded through equation 7.5. There, Ω is a function returning 1 for win and 0 for

loss or draw, D is the average Euclidean distance to nearest enemy and Dmax is the

maximum possible distance.

r(a) = 1000Ω + 500(1− D

Dmax
) (7.5)

The XCSA agent utilised the Assigner’s order updates throughout the game and

rewarded (see equation 7.6, where Λ is the is the euclidean distance to the target)

immediately once it was told if the action was good or bad. Using equation 7.6, each

order event signal was rewarded differently. Upon receiving a successful event signal,

the rewardorder was set to 1000. A mission cancelled or failed signal led to rewardorder

being 0, and should the unit receive the event signal of killing an enemy outside the

ordered target, 500 were set for rewardorder.

r(a) = rewardorder + 500(1− Λ

Dmax
) (7.6)

7.3 Results of agent versus agent training

Before evaluating them, most of the agents needed to be trained in order to perform

well. Training was undertaken separately for each agent on each model, but always

against all three opponents. It was ensured that all agents were trained for the same

amount of time (for fairness), and long enough, so a performance convergence could be

observed for each agent type.

The performance of the agents against the FSM, SemiRandom (SR) and Random

(R) agent in terms of the ability to win games on the different SGDL models and maps

was measured through experimentation. Nearly a million games in total were run,

concluding in the results presented below.

122

7.3 Results of agent versus agent training

MinMaxMCTS XCS XCSA PF NEAT NEATA
0%

20%
40%
60%
80%

100%

FSM SR R

W
in

 lo
ss

 ra
tio

 (W
LR

) %

MinMaxMCTS XCS XCSA PF NEAT NEATA
0%

10%
20%
30%
40%
50%
60%

FSM SR R

W
in

 ra
te

 (W
R)

 %

Figure 7.6: Summary of agent versus agent results

The results are analysed in terms of the win rate (WR) and the win loss ratio

(WLR), where the win rate is given as w
w+l+d and the win loss ratio is given as w

w+l .

Here w is the amount of games won, l is the amount of games lost and d is the amount

of games that ended in a draw. The win loss ratio ignores the draws, in order to focus

on the ratio of win/loss against opponents, but must be seen with respect to the win

rate which is the win ratio in terms of total games played.

In table 7.3 the following terms are used; Opp. refers to the opponent agents, W

refers to won games, L refers to lost games, D refers to draw games, WLR refers to the

win loss ratio, WR refers to the win rate. The standard deviations are given in table 7.4

where the following terms are used; σWLR refers to the mean standard deviation of the

win loss ratio and σWR refers to the mean standard deviation of the win rate. The

terms σσWLR and σσWR denote the standard deviation of the population of the standard

deviations given in the above means. This is necessary as the samples are divided on

different models and maps.

In total, 8550 games were played for the adversarial search based agents MCTS

and MinMax and 55575 for the other agents. The previously mentioned computational

complexity of the search based agents required us to make this differentiation in order

to perform the experiments in a reasonable time frame. The variation between samples,

as seen in table 7.3, is highest with MinMax and MCTS given the smaller sample size,

123

7. AUTOMATED GAMEPLAY

Table 7.3: Summary of agent versus agent results

Agent Opp. W L D WLR WR

MinMax FSM 3667 3264 1619 52.91% 42.89%

MinMax SR 2164 1584 4802 57.74% 25.31%

MinMax R 3787 297 4466 92.73% 44.29%

MCTS FSM 4038 2799 1713 59.06% 47.23%

MCTS SR 2549 947 5054 72.91% 29.81%

MCTS R 3930 225 4395 94.58% 45.96%

XCS FSM 16691 31865 7019 34.37% 30.03%

XCS SR 2695 5337 47543 33.55% 4.85%

XCS R 6226 1570 47779 79.86% 11.20%

XCSA FSM 13395 35280 6900 27.52% 24.10%

XCSA SR 2653 5771 47151 31.49% 4.77%

XCSA R 6622 1679 47274 79.77% 11.92%

PF FSM 25505 23643 6427 51.89% 45.89%

PF SR 11526 14461 29588 44.35% 20.74%

PF R 29711 1976 23888 93.76% 53.46%

NEAT FSM 26461 21741 7373 54.90% 47.61%

NEAT SR 4172 4496 46907 48.13% 7.51%

NEAT R 9759 1393 44423 87.51% 17.56%

NEATA FSM 20391 28308 6876 41.87% 36.69%

NEATA SR 2973 8122 44480 26.80% 5.35%

NEATA R 6726 2901 45948 69.87% 12.10%

but it is low in general for all agents.

As can be seen in figure 7.6 and table 7.3, the MCTS, MinMax, PF and NEAT

agents have a WLR near or above 50%. XCS, XCSA and NEATA have a WLR lower

than 50% on all opponents other than the Random agent. Only the MCTS and MinMax

agent were able to defeat the SemiRandom agent. To our surprise, the SemiRandom

agent demonstrated quite good gameplay on most models despite its naive approach.

It tends to gather its units in small clusters with effective selection of offensive actions

based on the finite-state automaton logic.

With regards to WR, most agents had a performance less than 50% against all

opponents because of draw games. The MinMax, MCTS and PF agents have the

124

7.3 Results of agent versus agent training

Table 7.4: Standard deviantions of agent versus agent results

Agent Opp. σWLR σWR σσWLR σσWR

MinMax FSM 0.05 0.04 0.02 0.02

MinMax SR 0.08 0.04 0.04 0.02

MinMax R 0.04 0.04 0.03 0.02

MCTS FSM 0.04 0.04 0.02 0.02

MCTS SR 0.07 0.04 0.02 0.02

MCTS R 0.04 0.04 0.04 0.02

XCS FSM 0.02 0.02 0.01 0.01

XCS SR 0.05 0.01 0.01 0.00

XCS R 0.04 0.01 0.03 0.01

XCSA FSM 0.02 0.01 0.01 0.01

XCSA SR 0.04 0.01 0.02 0.01

XCSA R 0.05 0.01 0.03 0.01

PF FSM 0.02 0.02 0.01 0.01

PF SR 0.03 0.01 0.01 0.01

PF R 0.01 0.02 0.01 0.01

NEAT FSM 0.02 0.02 0.01 0.01

NEAT SR 0.04 0.01 0.02 0.00

NEAT R 0.03 0.01 0.02 0.01

NEATA FSM 0.02 0.01 0.01 0.00

NEATA SR 0.04 0.01 0.02 0.00

NEATA R 0.04 0.01 0.03 0.00

highest performance in general in terms of their WLR as noted above, and a low

number of draw games compared to the other agents. The NEAT agent has a very low

WR, which is caused by a very high amount of draws. This is due to its behaviour,

which is similar to the SR agent, i.e. it gathers in clusters near its spawn, and waits for

the opponent. Breaking the turn limit of 100 results in a high amount of draws against

the SR and R agents which, in general, approach their opponent rarely. It does however

defeat the FSM agent, as it is built (via its incorporated BFS method) to engage in a

battle.

The XCS, XCSA and NEATA agents have a performance which was below the

chosen acceptable threshold of a WLR of 50% against the three opponents, and an

125

7. AUTOMATED GAMEPLAY

Table 7.5: Results of the agent tournament. Each cell shows the result of 2000 games of

Rock Wars in the form: column agent wins/row agent wins/draws.

MCTS PF MinMax NEAT

PF 228/902/870

MinMax 728/435/837 1062/145/793

NEAT 186/461/1353 501/299/1200 200/500/1300

XCS 260/378/1362 371/435/1194 210/552/1238 62/2/1936

equally poor WR performance in terms of a high amount of draws games as well.

In conclusion, the MinMax, MCTS, PF and NEAT agents were determined to be

adequate in various models and map combinations, thus capable of general gameplay.

After establishing a baseline performance for all agents, we set up a small tour-

nament with agents from all main techniques (except the R, SR, and FSM agents).

We were interested how well the agents would perform against each other after being

trained equally. Table 7.5 shows the results of this tournament. The first observation

that can be made, is that most games tend to end in a draw. With the exception

of the PF vs. MinMax pair up, most of the times the agents seem unable to finish

the game before the turn limit is reached. This is especially true for the NEAT vs.

XCS games. This may be due to the very defensive tactics of the NEAT agent, as we

will discuss in section 7.4. The other observable trend is that the PF agent clearly

dominated the game tree based MinMax and MCTS agent, but achieved roughly equal

performances against the XCS and NEAT agents. The other agents achieved mixed

results. For a more intuitive ranking, we can order the agents by their total number

of wins: PF (2836), MCTS (1402), XCS (1367), NEAT (1260), MinMax (990). The

absolute numbers indicate a slightly different picture than in the test with the baseline

agents. The Potential Field agent appears to an outlier due to its many wins against

the MinMax agent. MCTS and XCS show equal win rates, while the XCS and NEAT

agents show similar performances than before. The NEAT agent produced the highest

number of “draw” games due to its very defensive tactics, basically hiding with all its

units in a corner of the map, waiting for enemy attacks. A very frustrating tactic for

human player, as we will discuss in the next section.

126

7.4 Results of human play testing

7.4 Results of human play testing

To test how enjoyable, human-like and challenging the agents were, we set up an online

user test system. Through the system human participants were paired up for a Rock

Wars game, after a short tutorial, with an agent and then for a second round with

another agent. We used three different Rock Wars configurations, all based on findings

from preceeding experiments (which will be discussed in section 9.1); players were

explicitly informed about how the game’s configuration might differ between plays.

Furthermore, only the FSM, MinMax, MCTS, PF and NEAT agents were used in this

test. After the games a short survey was presented where players could report their

preferences regarding the opponent, game and the experiment itself. The following four

questions were asked after the two games were played:

1. Which opponent was more challenging?

2. Which opponent was more enjoyable to play against?

3. Which opponent played more like a human?

4. Disregarding the opponent, which game did you prefer?

All questions could be answered with either A, B, Neither or Both, where A and B

refer to the first and the second game session. The numbers presented in this section

are based on these self-reports.

The total number of participants was 60. The average age was 23.47 years and 95%

of the participants were male. All participants played computer games in general and

all participants enjoy playing strategy games. Of the participants, 45% play games

for fifteen or more hours a week, 26.67% play games between ten to fifteen hours a

week, 18.33% play games between six to ten hours a week and 8.33% play games

between one to five hours a week. 23.33% consider themselves experts in strategy

games, 55% consider themselves advanced players and 20% consider themselves novices.

One participant did not answer how many hours she plays games, or what her self-

assessed skill level was. It may be noted that the selection of participants is heavily

biased towards young male experienced gamers, but given that most of the players were

recruited in an online community for strategy games, we considered this demographic

as the core audience for our experiment and this was not incorporated into our analysis;

the effect of self-selection can therefore be neglected.

As can be seen in figure 7.7 and table 7.5(a), the agent with the highest win rate

against humans was the NEAT agent with a win rate of 50%. The worst in terms of

127

7. AUTOMATED GAMEPLAY

(a) Reported results

Agent Games Win rate Challenging Enjoyable Human

likeness

FSM 28 21.43% 35.71% 53.57% 21.43%

MinMax 26 30.43% 53.85% 38.46% 61.54%

MCTS 27 34.62% 33.33% 37.04% 25.93%

PF 21 38.10% 47.62% 47.62% 52.38%

NEAT 18 50.00% 55.56% 11.11% 27.78%

(b) p-Values for Human-likeness

FSM MCTS MinMax NEAT

MCTS 0.70

MinMax 0.0024 0.0084

NEAT 0.63 0.89 0.026

PF 0.029 0.067 0.539 0.12

(c) p-Values for Enjoyability

FSM MCTS MinMax NEAT

MCTS 0.25

MinMax 0.41 0.73

NEAT 0.059 0.35 0.22

PF 0.25 0.91 0.67 0.44

(d) p-Values for Challenge

FSM MCTS MinMax NEAT

MCTS 0.85

MinMax 0.18 0.13

NEAT 0.19 0.15 0.91

PF 0.41 0.33 0.67 0.63

(e) p-Values for win rate

FSM MCTS MinMax NEAT

MCTS 0.33

MinMax 0.64 0.61

NEAT 0.057 0.28 0.13

PF 0.22 0.74 0.4 0.46

Table 7.6: Summary of human play results. p-Values < .05 are considered significant.

128

7.4 Results of human play testing

FSM MinMax MCTS PF NEAT
0%

20%

40%

60%

80%

Winrate Challenging Enjoyable Human-likeness

W
in

 lo
ss

 ra
tio

 (W
LR

) %

Figure 7.7: Summary of human play results

win rate was the FSM agent with a win rate of 21.43%, which was in line with the

results gathered in the experiments against non-human opponents.

In terms of challenge, the NEAT agent was the most difficult with a challenge rating

of 55.56%, and the least challenging was the MCTS agent with 33.33% followed by the

FSM agent with 35.71%. The MinMax and PF agents are above or near 50% in terms

of participants who fought the agents and found them challenging.

The most enjoyable agent was the FSM agent: 53% of the participants who fought

the agent found it enjoyable. The least enjoyable opponent was the NEAT agent with

only 11.11% of the participants rating it as such. The PF opponent was found the

second most enjoyable agent with 47.62%, and both MinMax and MCTS were found

nearly equally enjoyable.

In terms of human-likeness, the most human-like reported agent was the MinMax

agent with 61.54% and the PF agent with 52.38%. The MCTS and NEAT agents were

not as particulary perceived human-like with only 25.93% and 27.78% respectively. The

least human-like agent was the FSM agent. P-values displayed in table 7.5(b) show that

die difference in perceived human-likeness between the MinMax agent and all others

but the PF opponent is significantly higher.

Although the NEAT agent was the best performing in terms of win rate and chal-

lenge provided for the participants, players reported that it was less enjoyable or

human-like than the other agents. This can be explained by its passive behaviour,

not approaching the enemy; some players even reported it as “broken”. This could

also be observed in the tests against non-humans, where it accumulated a large number

of draws against the SemiRandom and Random agents. The second best performing

agent, in terms of win rate and challenge, was the PF agent. It also provided a good

level of enjoyment for the participants, and was considered fairly human-like. The third

best performing agent was MinMax in terms of win rate and challenge, and provided

129

7. AUTOMATED GAMEPLAY

a good level of enjoyment for the participants, as well as being perceived as the most

human-like. The MCTS agent provided a better performance in terms of win rate and

challenge than the FSM agent, and was perceived more human-like. However despite

its low performance, the FSM agent was the most enjoyable agent of all five in the

experiment.

Although the data is not completely conclusive, it shows that the agents based on

MinMax, MCTS, Potential Fields and NEAT performed better than the simple FSM

agent in terms of win rate, challenge and human-likeness. Analogously, those agents

showed a superior performance in terms of win rate and win loss rate against the

Random and SemiRandom agents in the non-human experiments. The only exception

is the NEAT agent which was unable to approach SemiRandom and Random due to

the reasons discussed. It can therefore be concluded from the non-human and human

experiments that the agents based on MinMax, MCTS and Potential Fields have high

skills in terms of their ability to play, that they are flexible under changing rule-sets

and capable to some degree of showing human-like behaviour. Given that all agents

perform a turn in less than a second for all models, we can state that all agents have

shown reasonable runtime behaviour for our needs.

The NEAT agent was not enjoyable for the participants and it was not perceived

human-like. It was also unable to engage the Random and SemiRandom agents. There-

fore it cannot be considered as playing well in general, but has shown potential in

defeating skilled opponents. The Assigner decreased the performance in agents when

used to assign orders, but its ability to measure the relative power of enemy units was

beneficial. The XCS, XCSA and NEATA agents have shown a poor level of skill in

play against any other opponent than the Random agent, both in terms of win rate

and win loss rate. The only two agent architectures that could reliably outperform all

the benchmark agents (even in terms of win/loss ratio) were both tree search-based:

MinMax and MCTS. This could be seen as indicating the value of game-tree search

over non-searching methods. It is important to note that both the MinMax and MCTS

agents used the same board evaluation function, which is a neural network trained by

NEAT. (The board evaluation function was re-trained for each model.) Using the same

evaluation function could explain the similar (but not identical) performance profile.

Thus, the MCTS agent is just as reliant on a good evaluation function as the MinMax

agent, so these results could also indicate the superiority of neuroevolutionary state

evaluation functions. The NEAT agent, which learns state-action mappings rather

than state-value mappings, is among the better performing agents but scores slightly

lower than the tree-search agent. This finding agrees with the findings of previous

130

7.5 Conclusions

comparisons of state-value and state-action mappings in other games, such as racing

games, where state-value mapping turned out to be superior (195).

7.5 Conclusions

Although the MCTS agent did not stand out in any category in the human play tests,

we decided to use it in all experiments listed in the following chapters (unless stated

otherwise). This decision was made for practical reasons, and due to the MCTS agent’s

sufficient performance in terms of winning games and its performance in terms of

computational complexity. Equipped with a meaningful board evaluator function, the

MCTS agent requires no training at all to adapt to a new SGDL model. This makes

it more practical to use than for example the XCS. The XCS agent requires hours of

training to learn a game before being deployable. Furthermore, the MCTS agent allows

us to play a large number of games in adequate time due to its flexible and controllable

time-to-think parameter.

After presenting the game modelling language (SGDL) and the framework to play

expressed games, we will now move on to the aspect of determining the “interestingness’

of modelled games.

131

7. AUTOMATED GAMEPLAY

132

Chapter 8

Measuring Game Quality

After introducing the Strategy Games Description Language to model game mechanics,

we will now discuss algorithmic game mechanics generation and evaluation. We will

present several methods to quantify the player experience of a game, and therefore

make assumptions about how enjoyable a game is. However, we do not differentiate

player preferences yet. A further discussion about the implications of different playing

styles will be presented in chapter 11.

We follow the search-based procedural content generation paradigm, established

by Togelius et al. (184) among others. The term search-based here refers to a family

of metaheuristics which start with an initial solution for a problem and iteratively

try to improve it. Metaheuristics make few or no assumptions about the problem

being optimised, but instead use a specifically tailored fitness function which maps a

candidate solution to a numerical value. To recapitulate from section 4.1.1: search

algorithms are often used whenever the number of possible solutions is simply too large

for an exhaustive search for a global optimum. The vector of features that differentiate

solutions is often multidimensional and the set of all possible solutions is referred to as

the solution space, a virtual search space. On the other hand, some search algorithms

tend to converge prematurely on local optima, e.g. the hill climbing algorithm (196).

The family of algorithms we use in our research are evolutionary algorithms (EA),

genetic algorithms to be more precise, which work on a set of possible solutions in

every iteration. Inspired by biological evolution, EAs use the methods of reproduction,

mutation, recombination, and selection to determine the best solution of the current

iteration and the composition of the next iteration’s solution set. As it is inspired by

biological evolution, EAs normally refer to each iteration as a generation. How searching

the solution space using EAs was implemented in detail is presented in section 10. This

133

8. MEASURING GAME QUALITY

chapter presents the three fitness function we have used in conjunction with SGDL

games. This list is non-exhaustive, i.e. other approaches have been proposed and some

of them have been presented in chapter 3.2. All three fitness functions are simulation

based and use the artificial players presented in chapter 7. For clarity these aspects are

presented separately. When the following states that “a game is played”, it actually

refers to two agents simulating human gameplay.

Play Outs The following sections will use the term “play out” or “a game is played

out” (also called roll outs). This refers to two artificial players (agents) taking al-

ternating turns in a game modelled in SGDL; analogously to Monte-Carlo-Tree-Seach

(described in section 4.3.1.2). The different agents which were developed for the SGDL

framework, and how they form their decisions, was presented in chapter 7, and the

actual experiments and agent combinations will be described in chapter 10. But since

some of our fitness functions already require playouts, an introduction seems necessary.

A play out consist of a game and two agents. The game may be either in its initial or

intermediate state, meaning that the map might already contain units. At the start of

his turn, an agent receives a copy of the gamestate. He will then submit his decision

and the game continues. The game ends when either one of the agents has won the

game, or a stop condition of 100 turns is hit and the game ends in a draw. The latter

was introduced to prevent unsolvable games being played ad infinitum without any

progress, e.g. games where no unit with an attack ability is left.

Utility Functions It should also be pointed out, that all our fitness functions make

use of a quantification of the gamestate or the players’ standings in one way or another.

This transfers the concept of the quantifiable outcome (26, 110) of a game to the game’s

intermediate steps, i.e. the game does not only produce a quantifiable outcome, but a

hypothetical outcome is defined at all time while the game is running. Different nomen-

clatures exist, but we will refer to such approximation of an (hypothetical) outcome

as a utility (or score) function. Utility functions are a common element in computer

games. Arcade games are often designed with a utility function as a core element, and

meta-games evolve around who achieves the highest score. In some cases, games are

not designed to be solvable at all, i.e. the challenge for a player is to progress as far as

possible, and no dedicated game end except a “kill screen” (an intentional crash of the

program) exists.

However, numerical scores are rarely used as a gameplay element in strategy games.

An exception is Civilization, but that does not imply that utility functions are not ap-

134

8.1 A Definition of Balance

plicable. In fact, artificial agents frequently evaluate different aspects of the current

gamestate to determine the best valid move. A reason why overall score functions

are rarely used as a gameplay element, besides breaking immersion by making game

mechanics visible to the player, might be that a reliable indicator of which player

will win the game is often hard to design with low computational costs. We explored

this aspect further independently from the SGDL project with the card game Domin-

ion (197). Results indicated that even though the game contains a pre-designed score

mechanism, other indicators were necessary to reliably predict the winner in the early-

and mid-game. It also became clear, that a utility function must be tailored to a game’s

mechanics and dynamics.

Finally, the function to determine the standing of a player in all of our games

presented in section 6.1 made use of the health of all units on the battlefield as a score

heuristic:

Sp =

Up∑
up

healthup −
Uo∑
uo

healthuo (8.1)

Where the score Sp of the player p is defined as the difference between the sum of health

of all (Up) his units and the sum of health of all (Uo) his enemy’s units. The assumption,

that the overall sum of health of all of a player’s units relates to his chance of winning

the game, is directly taken from the winning condition, to eliminate all enemy units

by decreasing their health to zero. This is also an example of how a utility function

fails to capture essential parts of the game mechanics. Besides the fact, that combat

strength is not taken into account, the fitness ignores the economy mechanic in Rock

Wars (section 6.1.3). Without any further context the following two states receive the

same utility.

• The player just started the game and built a unit of type A

• The player is close to loosing and has just one unit of type A left

In both cases the sum of overall health would evaluate to the health of the unit of

type A. However, we chose to evaluate all games with the same fitness function(s) to

compare the results.

8.1 A Definition of Balance

The term “balance” is often used to describe a game’s property of permitting fair

gameplay. A game is defined here as “fair” if all players have the same chance of

winning regardless of their start positions, e.g. their starting point on the map, unit

types at their disposal, number of units, etc. If we assume an equal skill level for each

135

8. MEASURING GAME QUALITY

player, every start position should provide an equal chance to win the game. This

requires that the player employs the correct strategy for his start position. However,

different start positions may require different strategies. Additionally, a game is defined

as “balanced” if for every strategy a counter strategy exist. A “strategy” here implies a

course of actions based on a decision making policy X. A “counter strategy” Y for X is

therefore a strategy to ward off the effects (attacks) caused by X. Example: if player A

decides to employ strategy X, which is the construction of a large air fleet to bombard

player B’s base, then a possible counter strategy Y for player B would be equipping his

base with enough anti-aircraft defences to fight of player A’s attack. This requires that

player B is aware of strategy Y and its relation to strategy X, and he must be able to

perform the actions of strategy Y at an adequate skill level.

Transferring this principle to a micro level of gameplay, unit types may also be

“balanced”. Unit types are balanced if each unit type has (a) designated counter

part(s), e.g. flare launchers against heat-seeking missiles. The consequence of lacking

a counterpart for a unit allows a player to use it as an exploit and easily win the

game. Such a unit type is often humorously referred to as a the “I win button” -

often with a sarcastic undertone since such a unit type breaks the game experience and

may frustrate players. Game developers often allocate a large amount of resources to

balance-testing; especially for titles which are centred around a multi-player component,

e.g. the closed beta testing for Blizzard’s Starcraft II ran over five months with 40,000

players participating (198). Naturally, beta-tests aim to tease out a multitude of aspects

which would make a game unfair, but in our research we focused on the combat strength

of a unit. Combat strength here refers to the utility of a unit, i.e. how strong or useful

a unit is in a battle.

We start with the direct comparison of two units of different unit types: a unit type

is stronger than another if it can reduce the opponent’s health faster during consecutive

turns than it takes damage. Our first game “Simple Rock Paper Scissors” simulates

this setup. A unit type relationship can be expressed in a directed graph. Each node

represents a unit type and edges represent the comparison of two units in a fire fight:

the direction of the edge indicates which unit wins. A complete directed graph specifies

all the power grades. Nodes with more incoming- than outgoing edges are more likely

to be weaker in the game than unit types with more outgoing edges. This method of

analysis has been applied to other game types before, figure 8.1 shows an overview of

the contemporary hand game “Rock Paper Scissors Lizard Spock”. Each choice has

two choices it looses against, and two choices it overpowers. A simple approach to

balance strategy games therefore could be to construct the unit types of a game in

136

8.1 A Definition of Balance

Rock

Paper

ScissorsLizard

Spock

Figure 8.1: Directed graph of “Rock Paper Scissors Lizard Spock”, an extended version

of the hand game “Rock Paper Scissors”. In coming edge means that option looses against

the option at the other end of the edge. The creator Sam Kass writes on his webpage:

“Scissors cuts Paper covers Rock crushes Lizard poisons Spock smashes Scissors decapitates

Lizard eats Paper disproves Spock vaporizes Rock crushes Scissors” to explain all the

combinations (199).

a way they would form a source- and sink-free graph. A source - a node which no

incoming edges - would be unbeatable, and a sink - a node with no outgoing edges -

would lack the ability to beat anything in the game. Additionally, another approach to

balancing would be harmonising the degree of each node, i.e. each node has the same

number of incoming and outgoing edges.

8.1.1 Complementary Unit Types

The concept of directed graphs has the shortcoming that power relations are binary

and do not resemble the different degrees the outcome of a fight may have. It does not

take the damage into account that the inferior unit does to the winning unit; the winner

eventually does not come out of a fight unharmed. Furthermore, the graph does not

take cooperation between units into account. This either refers two different unit types

supporting each other with different abilities, e.g. “combat and healer” or “artillery

and infantry”, or units which are only effective in large numbers. We follow the idea

of supporting units and present a way to evolve complementary unit sets. A set of

unit types is complimentary when they have different strengths, so that each of them

is better than the others in some respect; and when combining units it is generally

beneficial to have a balanced set rather than having the equivalent number of units

of only one type. Many strategy games include the unit types which take the roles

of infantry, long-ranged combatants and artillery (or something similar), where each

137

8. MEASURING GAME QUALITY

Figure 8.2: This screenshot from Warcraft III shows a typical fight between two parties,

Orcs (red) and Humans (blue), over a building. Instead of joining the infantry in the

picture’s bottom, the hero Arthas casts his healing spell to prevent allied soldier from

dying, but deals no damage himself.

unit type has unique strengths and weaknesses so that a successful strategy depends on

using them in combination. Figure 8.2 shows a common example: it is more beneficial

in certain situations for a hero to act as a healer than entering the fight himself. Even

though the hero is also a strong fighter in this example, a simple directed graph as

described above does not take his ability to support other units into account. Another

case to discuss is the intentional creation of non-combat units: real military operations

consist of a supply chain with designated logistics vehicles or aircraft to provide troops

with necessary supplies or transport them to the frontline. It therefore seems natural

to integrate this aspect into simulated warfare. Hellwig’s Kriegsspiel (presented in

section 2.1) took logistics into account, and many modern strategy games feature this

aspect in one way or another (Figure 8.3), simulating the economic aspects of war.

Even the economic simulations mentioned in section 2 could be seen as an extension of

war.

To additionally capture this aspect, we propose a simulation-based fitness func-

tion for determining how “balanced” a game is. The following fitness was primarily

138

8.1 A Definition of Balance

Figure 8.3: Screenshot from Blue Byte’s Battle Isle II. It shows a part of the game map

on the left, and details of the selected unit on the right. The selected unit is an unarmed

helicopter whose only purpose is to transport combat units over long distances in short

times, but is not able to retaliate any hostile action.

139

8. MEASURING GAME QUALITY

designed for “Complex Rock Paper Scissors” and “Rock Wars” (as described in se-

tions 6.1.2 and 6.1.3), but we believe that this approach could theoretically be trans-

ferred to other strategy games. However, the insights given by this fitness function

may be insignificant or hard to obtain with a higher number of different units, as this

will exponentially raise the number of required trials. We start with our simple games,

where each unit type has seven relevant attributes: health (range [0, 100]), ammunition

([0, 100]), three attack values ([0, 100]) and both maximum and minimum attack range

([0, 6]). The attack values determine the damage that can be done by one shot on each

of the enemy unit types. This means that to define a complete set of unit types, 21

values need to be specified (seven per unit class; three classes in the game).

8.1.2 Fitness function

The aim of this fitness function is to find a balanced unit configuration (here: sets

of attribute values for attack, health etc.). A balanced, or complementary, set is one

where the non-transitive power relations between units make it advantageous to com-

pose armies of diverse units rather than homogeneous ones. Implicitly, we reward the

cooperation between different unit types. The balance of a unit set is measured as

follows: six battles are played for each unit type set. For the automated gameplay we

used our MCTS agent (see section 7.2.5) and a special tailored heuristic. The very low

computational complexity of this heuristic agent allowed us also to run experiments

with complex scenarios in manageable time. Furthermore, it allowed us to test the

effect of a very different playing style on the fitness functions, as the heuristic agent

has a markedly different “temperament” to the MCTS agent. The heuristic can be

described in pseudocode thus:

for all units do

if unit can attack then

attack where most damage caused (the unit against which the current unit is

most effective)

else if next step towards nearest enemy is not blocked then

move towards nearest enemy

else

do a random move

end if

end for

Balanced unit sets with units of all three types (denoted ABC) play against unbal-

anced sets with units of only one type (AAA, BBB and CCC). Figure 8.4 illustrates

140

8.1 A Definition of Balance

A A

B A

AC

A B

B B

BC

A C

B C

CC

Figure 8.4: Three configurations were used in CRPS for evolving complementary unit

sets. The complementary unit set played against a homogeneous unit set consisting of unit

types A, B, or C. All three configurations were both played with the left- and the right

player starting.

the board layouts for each configuration.

To ease the effect of being the starting player, each configuration is played once

with the left player starting, and once with the right player starting. Ultimately, the

fitness is defined as the minimum performance achieved by the balanced set (ABC) in

any of the six games. To minimize noise, the fitness calculation is averaged over 200

trials (t). The fitness can ultimately be formalised as:

F := min(

∑t a1 + a2

t
,min(

∑t b1 + b2
t

,

∑t c1 + c2

t
)) (8.2)

where a1, a2, b1, b2, c1, c2 are defined as 1 if the player with the balanced set has won

against the according non-balanced set, or 0 otherwise, and t = 200. More precisely:

a1 is the number of times ABC won against AAA as the starting player, and a2 is the

number of times ABC won against AAA while not being the starting player (b1, b2, c1, c2

for BBB and CCC analogously).

In “Rock Wars” the same fitness function can be used. Additionally, the cost

variable for each class is added to the solution space, specifying a total of 24 values

to evolve. As players start with a factory instead of pre-picked units, we transfer the

concept of hetero-/homogeneous unit sets to the types of units a player could build

with his factory, i.e. one factory could only produce unit type A, while the factory of

player two is able to produce all three unit types (ABC); analogously for type B and

C. This requires the game Rock Wars to be extended with a second factory class, and

each player therefore starts with his own unique factory.

However, this fitness assumes that both players have access to the same unit set

or a subset of said unit set. In section 8.4 we will present and discuss a generalised

141

8. MEASURING GAME QUALITY

version of this fitness which is capable of measuring cases where each player disposes

of different unit sets.

8.2 The Outcome Uncertainty of a Game

The previous section presented a method to explore the static qualities of a game. We

explored the possibility to balance a unit set using artificial agents. So far no quality

assessment based on the playout style was made. Even balanced unit sets can create

an uninteresting game if it is obvious to the players what the optimal strategy is.

Koster (76) and other authors (200) describe this as dominant strategies and inferior

moves. We already discussed units or strategies which break the game’s balance in

section 8.1, and a dominant strategy is one which is always superior regardless what

the opponent plays. Many simple games can be won by a dominant strategy and are

therefore considered “solved”, e.g. Tic-Tac-Toe.

We explored the phenomenon of dominant strategies and inferior choices in a differ-

ent study to show that it is actually relevant for strategy games (201). We demonstrated

that the utility of certain parts of the game mechanics can be quantified. Eliminating

inferior choices and dominant strategies serves the goal of allowing a less predictable

gameplay, without randomising the course of the game where the players’ moves have

no impact on the game. Our second fitness is therefore focussed more on game me-

chanics as a whole. Game mechanics should provide and encourage interesting games

where players increase their chances by employing the right strategy rather than just

pure randomness. Our assumption is that a game is interesting if it keeps a player

engaged in the conflict. One aspect of an engaging conflict is its outcome, i.e. who

will win or lose. Cincotti and Iida (202) theorised in 2006 (already briefly introduced

in section 3.2.3), that the property of an interesting board game is high “outcome

uncertainty” until a late game phase. They proposed a method to determine that un-

certainty when the game is so complex i.e. has a high gametree branching factor, that

an analytical determination is not possible. Instead they propose a stochastic method.

Their hypothesis makes use of the definition of quantifiable information by Claude Shan-

non (52). Shannon presented a measurement of information content associated with a

random variable (a character of a finite alphabet). The term information here has no

semantic implication and the meaning (signification) of a unit of information is com-

pletely arbitrary, e.g. the title of a book or simply the character “a” may be considered

as a quantitative amount of information. Shannon introduces the notion of entropy as

the minimum number of bits to represent a message.

142

8.2 The Outcome Uncertainty of a Game

Entropy is the measurement of average surprise about the outcome of a random

variable, and defined by Shannon as:

H(X) = E(I(X)) = E(− ln p(X)) (8.3)

with the random variable X with possible values x0, . . . , xn and E(X) as the expected

value operator. Following equation 8.3 the entropy can be explicitly defined as:

H(X) =

n∑
i=1

p(xi) I(xi) =

n∑
i=1

p(xi) loga
1

p(xi)
= −

n∑
i=1

p(xi) loga p(xi) (8.4)

Although in theory the base a of the logarithm is arbitrary, we will use the common

value a = e with information measured in nat1 in the following. For brevity H(X) can

then be defined as:

H(X) = −
n∑
i=1

p(xi) ln p(xi) (8.5)

If we now consider the possible outcomes of a game as a probability distribution P =

p0, . . . , pk, e.g. p0 = probability that player one wins, p1 = probability that player two

wins, p2 = probability that the game ends as a draw, we can also define the outcome

uncertainty of any given state of a game as:

U(G) = −
k∑
i=1

pi ln pi (8.6)

with k as the number of possible outcomes, and pi being the probability that the game

will end with outcome i. Cincotti and Iida proposed the above rationale along with a

method to approximate U for any given state G. They approximated the probability of

each outcome of the two-player game Synchronized Hex using a monte-carlo simulation

starting from the game state G with 1000 trials. The probabilistic distribution for state

G is therefore:

P (G) =
NA

1000
,
NB

1000
,
ND

1000
(8.7)

where NA, NB, AD are respectively the numbers where player A won the game, player

B won the game, or the game ended as a draw. The more information is revealed about

the run of play, the clearer the outcome of the game becomes, i.e. in a sequence of

gamestates U(G) normally (but not necessarily) declines. If the game permits moves

such that the player can escape an unpromising position by employing the correct move,

1Naperian Digit a logarithmic unit of information or entropy, based on natural logarithms and

powers of e.

143

8. MEASURING GAME QUALITY

the outcome uncertainty might also rise. The overall tendency however will decline until

it reaches zero at the end of the game.

We integrated Cincotti and Iida’s proposed method in our games with 1000 roll-

outs per turn to approximate the outcome probability. In each turn, after both agents

made their moves, the game state is cloned a 1000 times and each copy is played out

and the game’s outcome is recorded. For each turn the outcome uncertainty defined by

equation 8.7 is entered in a graphand normalised over the game’s length to the interval

[0,1], so that the game’s start and end equal the values 0 resp. 1. Now that the graph is

normalised in both dimensions, we then used the least-square method to create a fitting

over the actual uncertainty graph. This was done to efficiently calculate the distance

d. Following the stipulation that the final loss of uncertainty (final game phase) should

occur as late in the game as possible, we numerically computed the distance d of the

nearest point on the curve close to the point 1.0, 1.0 (the maximum uncertainty, game

length). Since we try to minimize this distance, the resulting fitness function is 1− d.

8.3 Avoiding a Start-Finish victory

The previously described way to approximate the outcome uncertainty of a game, and

our application to strategy games, is very robust regarding required expert knowledge

about the game. Besides the different outcomes of each game no further assumptions

are made by the fitness function. However, the computational cost of 1000 simulations

per turn make it infeasible for longer games with more gameplay mechanics (resulting

in a larger search space of valid move options). Yet, we want to focus on another

criterion of strategy games gameplay which is related: the thrill of a game, when

players have sudden sensations of excitement. Even though strategy games are often

slow paced, single actions or events often cause the spontaneous outbreak of emotions

of joy or anger on a intermediate triumph or setback. Our general assumption is that

a game is more interesting the more thrilling it is. It should be clarified, that “thrill”

may be a necessary aspect, but is not sufficient to create an interesting game. It is

debatable if a very abstract and random game is interesting, even though it might

create the sensation of surprise when players discover unanticipated effects of their

actions. Further investigations about the correlations with other aspects, e.g. can a

game be learned, how well can gain a skilled player an advantage over a novice one,

would clearly be interesting.

However, one method which seems to approximate the aspect of “thrill” very well is

the “lead changes” indicator used by Browne for combinatorial games (95) (presented

144

8.3 Avoiding a Start-Finish victory

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25

N
o
r
m
a
l
i
z
e
d

G
a
m
e

S
c
o
r
e

Game Turns

Player A Player B Lead graph

Figure 8.5: The normalized scores (red and green) for two players of an exemplary game.

The lead graph (blue) indicates the current leading player.

in section 3.2.4). Lead change herein refers to a utility function which assigns each

player a numerical value at each step in the game. The value is proportional to the

player’s standing in the game, i.e. a higher chance to win the game results in a higher

utility. If the player with the highest utility is a different player than in the last turn,

and therefore a new player is leading the scores resp. the game, a lead change has

occurred. Assuming that a utility function to determine the leading player exists, the

scores for each player is recorded for every player through every step of the game and

normalised to the interval [0, 1], whereas 1 represents the maximal score recorded. A

third graph (the lead graph) is created representing the difference between the two

players’ scores. Given that the two score graphs range between 0 and 1, the lead graph

can only range between −1 and 1. If the first player leading the game, the lead graph

will have a positive data point in that turn, a negative data point if the second player

leads. The example in figure 8.5 illustrates this more clearly: red and green are each

player’s performance graph normalized to the maximum score. Blue represents the

difference between the score graphs. Every time the sign of the lead graph changes, the

leading player changes. Following our assumption, that a larger number of lead changes

indicate a more interesting gameplay, our third fitness function optimises for the average

145

8. MEASURING GAME QUALITY

number of lead changes per game. The actual fitness is therefore the number of lead

changes divided by the number of turns the game lasted. Although this fitness does

not explicitly prevent inferior-choices, dominant-strategies or players’ action having no

effect, these flaws will not abet a high fitness score. If one player follows an optimal

strategy, which by definition renders the opponent’s strategy insignificant, and therefore

will lead the game from the game start to its end, no lead change will occur. Ergo the

resulting fitness is zero. The opposite case, where one player is playing an inferior

strategy, or chooses action with no effect, and the other player is playing an arbitrary

strategy, will lead to the same result.

8.4 Fitness functions for Action subtrees

This section discusses fitness functions for the evolution of subtrees of Actions to create

unit types with new behaviour. The actual experiment will be described in section 9.2.1.

Here, we present a generalisation of our “Balance” fitness function, and use an asym-

metry measure for SGDL trees as an indicator of how distinct two unit sets are. We

further use an auxiliary fitness functions “Maximum Damage” to test the behaviour of

our system.

The three used fitness functions operate on well-defined SGDL trees. SGDL does

not guarantee semantically correct trees, but allows to detect syntactical faults, e.g.

referencing non-existing attributes. Although model integrity checking is a well-known

problem discussed in software engineering research, we decided to keep our system

simple. However, whenever an exception during the simulation phases due to an ill-

defined SGDL tree occurs the candidate solution is assigned a score zero. It does

however stay in the population to ensure diversity. Two of our fitness functions here

are simulation based like our previously described fitness functions, i.e. agents play

games with the rules evolved against each other. But to improve the selection process

and save computation time, we implemented a few pre-sampling steps to prevent the

system spending time on unpromising genotypes. As the winning conditions are static

for all the games (to eliminate the enemy units until he has no units left nor can he

buy new ones), we know that each SGDL model has to contain at least one action

that reduces the health attribute of a target. With this knowledge we can traverse

the tree, look for a subtraction-operator node and test if its children are a constant

attribute with a positive integer number, and a property attribute node referencing a

“health” attribute of a target. If no such node can be found, the phenotype won’t be

tested through simulation and assigned a score of zero. Even with large and complex

146

8.4 Fitness functions for Action subtrees

tress, traversing the nodes is significantly faster than simulating a game using it. An

exception forms the Asymmetry fitness which is not simulation based, but instead a

deterministic value is calculated; as this is very light computationally, no pre-checking

is done. The following three fitnesses were used to evolve Action subtrees:

Maximum damage As a simple test of system we designed a fitness function that

recorded all changes of the attribute “health” of any unit in the game and simply

summed up the amount of damage done as a fitness value. The applicability for game

design might be limited, although generating unit sets with a huge amount of impact

might be a use case, it allowed us to verify that our framework evolved SGDL trees

successfully. This fitness function differentiates between unit sets, it therefore may

be possible to create a unit set that completely dominates the opposing unit set. It is

important to note here, that for this fitness function the pre-sampling step of traversing

the tree for a
-=

-node referring to a health attribute was disabled. Although not

strictly necessary, we disabled this step to not restrict the fitness function and create

a skewed fitness landscape. All solutions that would pass the pre-sampling test would

naturally achieve a high score in the “maximum damage” fitness.

Asymmetry The aspect of fairness plays an important role in multiplayer games.

Fairness here refers to the equality of each player’s chance to win the game. Most

games have as an ideal that a player’s chance of winning the game only depends on his

experience and skill with a game, and only little on external factors such as starting

positions or rules. Some games offer the option of handicaps, where a player who is

more experienced may chose a malus in order to keep the game interesting. Symmetry

plays a significant role in multiplayer gaming with levels or maps to provide the most

fair competition: team based first person shooter maps for competitive gaming are often

symmetrical, e.g. teams have equally shaped bases or similar. This also seems to be

the case for strategy games according to findings by Togelius et al. for generated maps

for Starcraft (120). On the other hand, StarCraft and Civilization, two of the most

successful commercial strategy games, are popular for their use of asymmetric unit sets.

The races in StarCraft differ so significantly from each other in a way that they require

different strategies and playing styles to win the game. Most professional eSports

players are therefore specialised in the race they are normally playing. Specialisations

in Civilization are a bit more subtle, selecting a different nations will give the player

a different set of perks, endorsing a slightly different playing style, e.g. culture over

military victory.

147

8. MEASURING GAME QUALITY

The unit types available to a particular player can be summarised as a “unit set”.

If two unit sets are significantly different from another, we will refer to them as “asym-

metric”. Our second fitness function tries to formalise this, and evolve SGDL trees that

maximise this aspect. To quantify how different two unit sets are, we take advantage

of the fact that they are both defined as trees. A survey of tree difference measures

can be found in (203). We will use the constraint edit distance: given two trees T1

and T2, the distance measure is defined as the total cost of deletion, insertion and edit

operations we have to apply on T1’s nodes to transform it into T2. Although we can

apply this to a SGDL trees immediately, the following example shall illustrate what

problem may occur: define an arbitrary unit type u and a tree T1 which contains u.

Now define another tree T2 which also contains u but also an exact copy of u, named

u′. The edit cost between T1 and T2 would be either deleting u or u′ while in fact both

subtrees provide the same options to the player, i.e. there is no relevant difference in

the game mechanics. But if u′ would only marginally differ from u, the problem would

still exist. To solve this we introduce a way of determining which child of a node to

delete and what its deletion cost is. Define trees T1 and T2, both having child classes

C0, . . . , CK , each a set of children ck0, . . . , ckN . To determine the distance between

these nodes we first find for every class k the node t with the most children and t0 with

the least children. If the amount of children in class k is equal, we skip this first step.

We then pick the following set S for deletion, where |S| is the difference in amount of

children.

argmin
S

γ(M(Ctk\Ski, Ct
′
k)) (8.8)

Where M(A,B) is the mapping between nodes in A and B and γ its cost, determined

by summing the distances between nodes mapped to each other. The distance between

T1 and T2 now is the average of the costs in M plus the minimum distance of every

s ∈ S to any of its siblings in the same class:∑
k

γ(M(A,B))/|M |+
∑
s

min
i
δ(cks, cki)) (8.9)

This ensures that a different number of unit classes, actions, attributes, i.e. a different

number of tree nodes, contribute proportionally to the distance measure, depending on

how different it is to its siblings. We also average the cost because we don’t want to

increase the distance measure just because there are children to measure in between.

This makes the distance measure depend on the branching factor, and ensures that

maximising the distance measure does not just maximise the number of child nodes.

148

8.4 Fitness functions for Action subtrees

To measure the asymmetry of the SGDL tree of an individual, we virtually divide

each tree into the unit classes assigned to player one and those assigned to player two.

Each unit set is combined under a virtual root node, and the constrained edit distance

between the two unit set is the overall score for an individual for this fitness.

Balancing This fitness function tries to approximate the “balance” of two unit sets.

With the balancing-fitness as described in section 8.1 we tried to approximate balancing

using symmetric unit sets by only evolving the parameters of the attack-actions. As the

actual behaviour and the number of classes were static, we could use a priori knowledge

to test how balanced two unit sets were: each unit set contained three units, if a unit

set of only one type of each unit could win against a heterogeneous unit set (composed

of all three unit types), a unit set was considered as unbalanced as it contained a “killer

unit”, i.e. a player could win the game by just using that unit type.

In the experiments with a dynamic number of classes and actions, no a priori in-

formation is available: the number of unit classes and actions are determined through

the evolutionary process. Only the attributes and winning conditions are static. The

evaluation through this fitness is a two-step process:

1. The game defined by an individual is played by two agents that use a random-

selection policy to determine their actions. In each round they pick a (valid)

action to play. If one of the random agents is able to win a game before the

limit of 100 rounds is reached, the individual will not be evaluated further and is

assigned a fitness of zero by this fitness. The background is, that a game which

can be won by chance is probably uninteresting, and does not comply with the

definition, that a strategy game requires “strategic thinking” (27).

2. Two Monte-Carlo Tree search (MCTS) agents play the game using the evaluator

function that previously has been developed for our Rock Wars game (47). This

is possible as the attributes and winning conditions remain the same, i.e. the goal

of the game is still to reduce the health of enemy units. Using our re-sampling

factor, 200 games are played using the MCTS agents. The theoretical optimum is

achieved when both players have a chance to win the game of 50%. We therefore

take the minimum of the win rates of both players, normalise it to the interval of

[0, 1], and use it as a score for the individual by this fitness.

149

8. MEASURING GAME QUALITY

150

Chapter 9

Searching the Strategy Game

Space

After having presented several methods to approximate the quality of game mechan-

ics of a strategy game, we would like to present how these methods were used. We

conducted several experiments with our example games from section 6.1. Following

the search-based paradigm for procedural content generation, the approach for all ex-

periments is similar: an evolutionary algorithm evolves a population of potential best

candidates for a fitness function. The next generation is formed using operators such

as reproduction, recombination, and mutation based on fitness of the solutions in the

current generation. While the previous chapter focussed on how to assign a score to a

certain individual, this chapter focusses on how to represent strategy games for certain

fitnesses and purposes, which algorithms we used, and which results were produced by

our experiments. We start with the evolution of simple parameter sets, compare the

results of different fitness values, and conclude with the evolution of complete subtrees

of Actions. It could be argued, that the newly created actions are an extension of the

human game designer’s creativity.

It should be added, that SGDL was also created to help human game designers

in developing and prototyping strategy games. As literature concerning mixed-initiate

approaches shows, generative algorithms can be used to extend, augment, or even

replace parts of the design process. With that in mind we created a simple application

to visualise and edit SGDL game trees (figure 9.1) for our own purposes. It allows

the basic creation of trees, but is not feasible for lay persons to create games without

assistance. The software’s user interface has shortcomings in its current stage, and the

development effort needed to achieve a certain state of usability, lead us to the decision

151

9. SEARCHING THE STRATEGY GAME SPACE

Figure 9.1: Screenshot of the SGDL Editor prototype. The main portion of the screen

shows an ObjectClass with several actions as child nodes. The lower left part shows the

overview of the complete SGDL model (without the SGDL root node). Each tree structure

relates to an ObjectClass. The upper left part of the screen can be used to navigate through

several results of the evolution process (only one in this example). The editor can also be

used to launch a SGDL model in the game engine.

of halting the development of the toolkit and focus on the planned development of

the evolution component. The evolution component is designed to evaluate SGDL

trees based on the fitnesses presented in chapter 8 and evolve and improve existing,

humanly designed, or randomly generated game mechanics; which would make them

more interesting or spot flaws such as inferior choices or dominant strategies.

9.1 Balance and Complementary Unit Sets

The first experiment targets complementary unit sets (as defined in section 8.1.1) using

our “balance”-fitness described in section 8.1 and the Complex Rock Paper Scissors

152

9.1 Balance and Complementary Unit Sets

Table 9.1: A unit type set with fitness 0.0.

Type Health Ammo Attack 1 Attack 2 Attack 3 Min range Max range

A 53.0 33.0 60.0 20.0 92.0 10.0 0.0

B 82.0 78.0 85.0 60.0 62.0 0.0 23.0

C 39.0 45.0 37.0 100.0 12.0 0.0 0.0

game described in section 6.1.2. We implemented a standard genetic algorithm using a

21-dimensional genotype: Each unit type has seven attributes: health (range [0,100]),

ammunition ([0,100]), three attack values ([0,100]) and both maximum and minimum

attack range ([0,6]). The attack values determine the damage that can be done by one

shot on each of the enemy unit types. We employed a µ + λ evolution strategy with

µ = λ = 50 (elitism, keeping the top 50% and replacing the others with offspring of the

top 50%). For simplicity, neither crossover nor self-adaptation was used. The mutation

operator added Gaussian noise with µ = 0, σ = 0.1 to all values in the genome. The

gene values were normalized to real values in the range [0, 1]. The games were played

by our Monte-Carlo agent described in section 7.2.5. To eliminate the effect of noise,

each fitness calculation was averaged over 200 trials.

A key research question in this experiment was whether the fitness function accu-

rately captures the desired property of complementarity, and whether the highly fit

unit type sets are more interesting to play than poorly fit sets. To shed some light

on this, we analysed a few evolved unit type sets which were published in 2011 (204).

Table 9.1 presents one unit type set with fitness of 0.0. We can see that that this

particular set contains two basically non-functional unit types: the A and C unit types

are unable to shoot given that their shooting range is zero. While games against AAA

and CCC will always end in favour of ABC, ABC will never win against BBB. Even

though ABC contains one functional unit and may even kill one unit of BBB, it will

always be eliminated by the second unit of BBB. Therefore there exists a dominant

combination that always wins over all other combinations, making this configuration

very uninteresting to play. Table 9.2 presents a set with fitness of 0.24, which is a

mediocre score. While all three unit types appear to be functional and have different

strengths and weaknesses, this configuration does not perform very well. We observe

that all three types have very similar minimum and maximum ranges. In conjunction

with the alternating turn order it may become a losing proposition to ever engage an

enemy unit. The unit that moves in range first will inevitably be the first one to take

damage since the enemy moves next. As our MCTS-based player will avoid most such

153

9. SEARCHING THE STRATEGY GAME SPACE

Table 9.2: A unit type set with fitness 0.24.

Type Health Ammo Attack 1 Attack 2 Attack 3 Min range Max range

A 46.0 69.0 61.0 71.0 71.0 2.0 5.0

B 6.0 43.0 22.0 90.0 22.0 3.0 5.0

C 36.0 82.0 40.0 47.0 6.0 2.0 4.0

Table 9.3: A unit type set with fitness 0.57.

Type Health Ammo Attack 1 Attack 2 Attack 3 Min range Max range

A 6.0 82.0 39.0 2.0 67.0 0.0 3.0

B 4.0 31.0 92.0 79.0 3.0 1.0 5.0

C 64.0 79.0 94.0 1.0 90.0 0.0 2.0

moves, most games will be counted as unplayable after a turn limit of 100. The posi-

tive fitness is probably because some games are won by one party or another by pure

chance. Table 9.3 presents the top-scoring individual found during one evolutionary

run. The unit types’ attack values are rather complementary — each unit type vulner-

able against at least another type. We see also see that type C has more health than

the other types. Type A and B can be seen as support units, while type C is more of a

general purpose combat unit. Units of type A and B can be killed with a single shot.

Analysing the model further, we see that range and ammunition have no effect

on the gameplay. Since the evolutionary algorithm had no constraint or heuristic of

evaluating the attributes, these values became quite large. Ammunition values are

such that all units may shoot without any shortage of ammo which makes this game

element practically irrelevant. A human game designer might now decide to remove this

mechanic completely, manually edit the values or add constraints to the evolutionary

algorithm. If we recreate this scenario in our simulator, we observe that a round often

ends after a series of one-hits, meaning a unit kills another unit with one shot. There is

no spatial movement necessary anymore. Nevertheless, it turns out that the balanced

set in fact wins over the unbalanced set most of the time. While this genome seems

to score high with our fitness function, we doubt that this unit configuration would

appeal to players at all. The generated solution reduces the gameplay to a few simple

decisions on which unit to shoot and in what sequence. It might be also possible, that

the Complex Rock Paper Scissors (CRPS, section 6.1.2) game used in this experiment is

too simple to support interesting gameplay at all. The main critique of this experiment

is that the used CRPS’ rules are too simple, and the map layout was too plain.

154

9.2 Comparing balance to outcome uncertainty

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

O
u

tc
o

m
e

 u
n

ce
rt

ai
n

ty

Game Turns

Low score (0.0)

Mediocre score (0.24)

Best score (0.57)

Figure 9.2: The outcome uncertainty in Rock Wars. The configurations were based on

our CRPS configurations: the blue graph (“low score”) is based on the values in table 9.1,

the red graph (“mediocre score”) is based on table 9.2, and the green graph (“best score”)

based on values in table 9.3.

9.2 Comparing balance to outcome uncertainty

The logical next step was to expand the game into Rock Wars, adding more elements

that strategy games normally contain, and validating the used fitness with additional

measures. To increase the complexity of the game and make it more appealing to

human players, we increased the map size to 20× 30 and randomly placed impassable

rock objects on 10% of the map tiles. Strictly speaking, we would need to check if the

non-deterministic creation of the scenario does not create unplayable games (even if

the configuration is valid) e.g. through creating impassable barriers, but in practice

non-playable maps have never been observed. To compare the findings to the previous

experiment, we introduced two new fitnesses: outcome uncertainty and lead changes,

as described in sections 8.2 and 8.3. For a initial comparison between Complex Rock

Paper Scissors and Rock Wars, we created several Rock Wars configurations based on

our CRPS findings presented in tables 9.1, 9.2, and 9.3 and evaluated them. Figure 9.2

shows an example of the development of the outcome uncertainty for our three different

configurations. The blue graph (“low score”) is based on the values in table 9.1, the

155

9. SEARCHING THE STRATEGY GAME SPACE

red graph (“mediocre score”) is based on table 9.2, and the green graph (“best score”)

based on the values in table 9.3. For the sake of readability we will refer to the graphs

by their colour.

We see that each configuration generates its own unique graph. All three graphs

show a very stable first part until the first shots are fired. The Blue graph shows that

the game is decided immediately once a shot is fired; hence the uncertainty drops to

the base level of 0. That there are several turns more needed to end the game could

have one of several explanations: either the game requires that the remaining units

have to be simply cleared from the battle field to trigger the win condition. In the first

Command & Conquer game a player had to clear all opponent’s passive structures like

walls and sandbags to win a multi-player match. Even if the opponent was unable to

fight back at all since he had already lost his production facilities and units. Another

possibility could be the existence of an obvious action (killer- or finishing-move) that

an agent has to take but due to its non-deterministic nature does not pick. Red shows

a slight decrease of the uncertainty in the beginning until the graph starts oscillating

heavily. We consider Blue merely a pathological case: the configuration is basically non-

functional since two unit types have a range of zero. But compared to that, we simply

consider Red a “bad” configuration, and Green shows a graph we would suspect from

a well working configuration. It is surprising here that the fittest configuration from

our previous experiment shows the slowest decrease of uncertainty in this experiment.

Following our measurement of the smallest distance to the point 1.0,1.0, this fitness is

rather low (0.5) compared to the mediocre (0.38) and bad configurations (0.46).

To gain further insight about all fitnesses, we sampled hundreds of both scenarios.

Because the development of the MCTS agent (described in section 7.2.5) was not fi-

nalised at the time the experiments were conducted, the majority of the games were

played by an agent which used a simple heuristic (as described in section 8.1.2) which

was abandoned later in the project, that played very aggressively but with some rudi-

mentary target selection. For each combination of scenario and agent, all three different

fitness measures were calculated, and the correlation between the different fitness mea-

sures calculated. We tried to aggregate as much data as possible for each experiment

in a reasonable time, whereas different computational costs lead to a different number

of simulation results for each agent/game combination: 7000 for Complex Rock Paper

Scissors using the heuristic and 900 using the Monte-Carlo agent. For Rock Wars we

sampled 675 games using our heuristic. Unfortunately we were not able to simulate

a significant number of Rock Wars games using our Monte-Carlo agent when we pub-

lished the data in 2011 (205). Looking at the data presented in tables 9.4 and 9.5

156

9.2 Comparing balance to outcome uncertainty

Table 9.4: The correlation between different properties of sampled games of CRPS. 7000

games were sampled using the heuristic (a) and 900 using the MCTS agent (b). Significant

values with gray background.

(a)

Balancing Lead changes Turns

Uncertainty 0.04 −0.08 −0.12

Balancing 0.01 −0.1

Lead changes −0.17

(b)

Balancing Lead changes Turns

Uncertainty 0.17 0.09 −0.16

Balancing 0.19 −0.36

Lead changes −0.53

Table 9.5: The correlation between different properties of ca. 675 sampled games of Rock

Wars using the heuristic. Significant values with gray background.

Balancing Lead changes Turns

Uncertainty 0.01 0.22 0.03

Balancing 0.02 −0.03

Lead changes −0.19

we observed several interesting correlations. Some of them can be discarded as non-

significant. Correlations are given as the Pearson correlation coefficient (r), while their

significance was tested against the null hypothesis (> 95% confidence):

t =

√
n− 2

1− r2

whereas r is the correlation coefficient and n the number of games played. Although

these are rather small, we would like to focus on three details here: A) the correlation

between the game lengths and the number of lead changes shows a significant correlation

in both games. This is rather expected as we assume that the rate of lead changes is a

constant property of the game mechanics. It is only natural that the total percentage of

lead changes decreases with an increasing game length. Therefore a negative correlation

can be observed. B) There is a weak correlation between the uncertainty measurement

and the number of lead changes in Rock Wars, while in Complex Rock Paper Scissors

there is not. While a correlation between tension throughout the game is to be expected

157

9. SEARCHING THE STRATEGY GAME SPACE

to depend on the number of lead changes, we believe that we don’t see any correlation

in CRPS as it is basically too simplistic to be able to create tension and there are not

many lead changes due to the short game length. We discard the negative correlations

of −0.08 (Heuristic) and 0.09 (MCTS) as non-significant. C) The simple CRPS scenario

shows a significant negative correlation between the uncertainty and the game’s length

(−0.12/−0.16). We assume that a game is either over very fast, or it is in a non-

functional configuration where the game end is only prolonged due to the fact that no

party can win (e.g. only having units with a range of zero left). While the values for the

Lead changes and uncertainty behave very similarly between the two agents for CRPS,

we observe several differences in the other correlations, especially in those that base

on the game length. We believe that this is connected to the increased average game

length: 20 turns (heuristic) versus 60 turns (MCTS). The MCTS agent is certainly more

versatile than the heuristic, which is hand-crafted to work with the current scenarios,

but has a markedly different and more cautious playing style. Note that there is no

straightforward relation to playing style.

9.2.1 Evolving actions

After successfully evolving attribute values within the SGDL tree, we advanced to evolv-

ing complete subtrees. The aim is to not just evolve characteristics of behaviour, but

evolve the behaviour itself. For this purpose we designed another genetic algorithm

which genotype was the SGDL tree itself (as opposed to a set of attributes before).

Selection, procreation, and mutation is done through operators known as genetic pro-

gramming. The fitness of each solution is determined using three fitness functions,

whereas two are simulation based, i.e. a game defined by an SGDL tree is defined by

an artificial agent while different measures are recorded. Additionally, we present a

evaluation function which operates on the SGDL tree itself.

The game which forms the context for all individuals in our experiments remains

Rock Wars. We removed all ObjectClasses from the game model but rocks and the

factories. However, the genetic algorithm was somewhat restricted, as each unit class

kept several attributes that determine the movement speed, and several combat related

features. The abilities of rocks and factory remain fixed (rocks have no abilities, factory

has a “create” actions for each unit type it can produce. Each unit class has an “owner”

attribute which controls which player may use it. The abilities of the unit classes are

generated through the evolutionary algorithm, but each unit at least posses the basic

movement abilities such as goNorth, goSouth, goEast, and goWest which will move

a unit in the respective direction if the target position is free, i.e. no other object

158

9.2 Comparing balance to outcome uncertainty

Table 9.6: Overview of the attributes of each class. The “Unbound attributes” refer to

attributes which were formerly used in statically defined attack functions. Now they may

be freely referenced like the other attributes.

Class Attribute Description

Rock x Horizontal coordinate

y Vertical coordinate

Factory x Horizontal coordinate

y Vertical coordinate

owner Player who owns the building

Units x Horizontal coordinate

y Vertical coordinate

health if health drops to zero, the unit is deleted

speed how many tiles a unit may move per turn

owner which player may create this unit in the game

cost cost to create a unit

Unbound attributes for Units

minrange a minimum range

maxrange a maximum range

ammo ammunition capacity

is residing there. Although important to note is, that we implement an observation

mechanism that removed a unit from the game board once its health reaches zero or

lower. The original model implemented the “remove from map” actions through the

SGDL tree, but initial test showed that the evolutionary algorithm produced too many

non-winnable games unless it produced a “remove from map” construct on very rare

occasions.

9.2.2 The solution representation

A solution is a SGDL tree containing several ObjectClass-nodes with individual action

subtrees. Each action-subtree consists of several condition- and consequence subtrees

which again consist of several subnodes, referencing object attributes and constant

values. The number and names of the attributes of each class are pre-defined (please

refer to the previous section). The “owner” attribute of each class is used in the

evaluation process to assign classes to a certain agent, i.e. the SGDL tree defines which

player may use and produce a certain unit type. Solutions where one player may choose

159

9. SEARCHING THE STRATEGY GAME SPACE

...
Population

SGDL SGDL Additional
classes

Created based on

copied added

Fitness

Game

Reports fitness

Model checks
Dysfunctional
models reported as
fitness = 0

Figure 9.3: Overview of the evolutionary algorithm

between several classes to build and another player has to rely on one are explicitly

allowed.

9.2.3 The Evolutionary Algorithm

The evolutionary algorithm used in this experiment used a population size of 25 indi-

viduals and each run was done over 50 generations. We used a crossover rate of 0.9 and

a mutation rate of 0.05. Selection was done via tournament selection with a tournament

size of 5. The crossover operator was implemented as following: two individuals are

selected, and a random node within the first individual is selected. The second step

is to pick a random node within the second individual that has the same type as the

randomly selected node in the first individual. In the last step the two nodes and their

subtrees are swapped between individuals. The mutation operator implemented, that a

random node was picked, its child tree deleted and randomly regrown. The simulation

based fitnesses used a sample factor of 200, i.e. each solution was played 200 times

with the overall average as the resulting fitness. Our preliminary experiments showed a

significant noise in the fitness function, which could be successfully dampened through

re-sampling, hence the sampling factor of 200 was chosen.

To reduce the complexity of the experiment, we did not include all the classes

necessary to play Rock Wars in the genotype. Instead whenever a solution is tested, a

copy is used with the classes rock and both factories added procedurally. Each factory

class (one for each player) is given a create action for each unit class the corresponding

player may use. The resulting SGDL tree is then used to determine the candidate

160

9.2 Comparing balance to outcome uncertainty

solution fitness. For our simulation based fitnesses an instance of game specified by the

SGDL tree is created, and played by two artificial players. While playing the game the

SGDL framework feeds its events into one of the fitness functions. Figure 9.3 shows an

overview of the overall process.

After introducing the experiment setup, we will now discuss the obtained results in

the next chapter.

161

9. SEARCHING THE STRATEGY GAME SPACE

162

Chapter 10

Overall Results

After we established the experiment setup in the previous chapter, we will discuss

the results of the evolutionary algorithm, using the fitness functions presented in sec-

tion 8.4. The initial experiment, using the “Maximum damage” fitness was a first

functional test for our system. The analysis of the highest scoring individual showed

the expected occurences of several
-=

-nodes referring of health attributes, i.e. several

actions decreased the health of one object or another. A further analysis showed that

the used operands grew over each generation. We stopped the experiment after ten

generations as there is no theoretical limit as the genetic operators can just increase

the operands almost ad infinitum.

A similar problem occurred with the Asymmetry fitness: our tree-distance fitness

counts the operation necessary to transform one tree into another. With no upper limit

in the size of the tree there is also no theoretical limit in the tree distance. Normalising

the tree-distance to the interval [0,1] is therefore only possible when all solutions of

all generations have been evaluated. But since our experiment required combining the

Asymmetry fitness with our Balancing fitness, we limited the total number of nodes

within a sub-tree and divided the score of the Asymmetry fitness by a large enough

constant.

Our main experiment with the two different fitness functions used a linear combi-

nation of both functions as an overall score for each individual. Different weights were

used in five different experiments to study the effect of each function, isolated and in

combination with the other. The following paragraphs report the findings of each of

the five experiment run, sorted by weight-configuration. An overview of all the weights

used can be seen in table 10.1. The following experiments were each carried out of

several times to gain a idea of the stability of the results. However, as each single

163

10. OVERALL RESULTS

Table 10.1: The weighting factors used in five different experiments.

γ (Asymmetry) λ (Balance) Comment

1.0 0.0 Only Asymmetry

0.75 0.25 Combined fitness towards asymmetry

0.5 0.5 Equally weighted fitness

0.25 0.75 Combined fitness towards Balancing

0.0 1.0 Only Balance

run took up to several days to run, we were unable to create enough data to create a

statistical analysis of the results until the time of writing. We therefore present the

results in the form of a qualitative analysis.

Only Asymmetry (γ = 1.0, λ = 0.0) The experiment using only the Asymmetry

fitness turned out to be the hardest to analyse: as there is no simulation done, we have

have no a priori information if the game is actually winnable even with the highest

scoring individual. A visual inspection of the tree showed a huge difference of classes

available to player one and two (one versus three). A closer analysis of the ObjectClass

of player one showed that winning as player one would be impossible: the only usable

action had the subtree as seen in figure 10.1. Even though units of that class available

could attack other objects, they would sacrifice themselves in doing so. Therefore the

game could only be won as player two, who had unit classes at his disposal which

featured a straight forward “kill” action. Further analysis of the complete individual

brought as to the conclusion that the high asymmetry score was caused, besides the

uneven number of classes available to the players, by an uneven numbers of actions

available to each unit, and a high percentage of actions which adjusted different at-

tributes than health, i.e. while player one’s units could only suicide attack, and one class

of player two’s unit could properly attack, were the rest of player two’s units rather

unconventional. An interesting example of those actions can be seen in figure 10.2,

where a unit may alter its own and the target minimum- and maximum ranges based

on the health of the target and its own minimum attack range.

Combined fitness towards asymmetry (γ = 0.75, λ = 0.25) Combining the two

fitnesses with these weights produced similar results than the previous combination:

even though the simulation-based fitness might return a fineness of zero if the game is

not winnable for one player, would a weight of γ > 0 always lead to a high score when

164

Action 1

− =

health

(0)

48

− =

health

(1)

44

Figure 10.1: An action evolved solely through the Asymmetric fitness. Although it

decreases a target’s health, it also decreases it own healths in order to invoke the action.

But doing so would kill the unit, as the ObjectClass only grants 44 health when a new new

unit spawns.

the two unit sets are very uneven. The observations made in the previous example do

apply here as well. The highest scoring - and winnable - example, achieved an overall

score of 0.39.

Equally weighted fitnesses (γ = 0.5, λ = 0.5) The highest scoring individual in

this configuration (0.33) was winnable for both players. Even though the unequal dis-

tribution of available classes (one versus three) persisted, the simulation-base fitness

with a weight of 0.5 already affected the population in a way that non-winnable indi-

viduals, i.e. games which achieved a score of zero through the balancing fitness, were

decimated. Furthermore, the only class available to player one has a significant higher

amount of health (90 versus 2, 2, and 28). In theory, player two has a variety of unit

classes at his disposal, while player one has to rely on one strong class.

Combined fitness towards Balancing (γ = 0.25, λ = 0.75) This highest scoring

individual (0.22) in this experiment assigned two classes two player one, and three

classes to player two. All classes had a maximum health value between 30 and 70

hit points. The maximum ranges of player two’s units were between 7 and 10, with a

minimum range 2 points lower than the maximum range on average. One class for player

165

10. OVERALL RESULTS

one differed significantly: its minimum range was zero, making it the most versatile

unit in the game in terms of range; but in return the class had the lowest health points

of all unit types in the game (30 points) and could only heal (41 points per heal) other

units. Player two had a healing unit as well at his disposal. This unit has a weaker

healing ability (20 points), but could also heal itself significantly (39 points), and use

a weak attack action for self-defence.

Only Balance (γ = 0.0, λ = 1.0) The high-scoring individuals in this experiment

run were typically structured as follows: player one disposes of one unit type with a

strong attack and the ability to heal itself quickly. Player two can utilise two unit

types: one that can attack enemy units, stronger than the units of player one may, but

posses no further abilities. But player two also has a unit type as his disposal that

has no direct attack action but may boost other friendly units’ minimum attack range

(although this attribute is not used not as such) and heal other units. In summary,

player one may only use units that can attack and heal themselves while player two

has weaker units but - since every unit has one action per turn - may heal a unit that

is attacking another target within the same turn. Ultimately, both unit sets have the

same abilities, but with a little twist.

166

A
ct

io
n

2

=
=

m
in

ra
n

ge

(0
)

3

<
=

h
ea

lt
h

(1
)

14

=

m
ax

ra
n

ge

(1
)

23

=

m
in

ra
n

ge

(0
)

2
3

F
ig

u
re

1
0
.2

:
A

n
A

ct
io

n
w

h
ic

h
a
d

ju
st

s
b

o
th

th
e

m
in

-
a
n

d
m

a
x
im

u
m

ra
n

ge
s

o
f

a
tt

a
ck

er
a
n

d
ta

rg
et

167

10. OVERALL RESULTS

Class A Class B Class C Class D

Player 1 2 2 2

Speed 2 3 1 2

Min range 5 8 0 0

Max range 13 10 6 5

Health 53 60 17 10

Cost 8 14 14 13

Table 10.2: Attributes of the classes found after 100 generations

10.1 Further experiments

Running exemplary experiments with different parameter weights was the first step in

analysing the behaviour of the genetic algorithm. We repeated the last experiment

(with γ = 0.5, λ = 0.5) to gain more statistical information. The progression of both

the average fitness per generation and the average maximum fitness in five runs of

the experiment can be seen in figure 10.4. It seems that the overall maximum con-

verges around generation 30, but the overall population is continuously improved by

presumably variations of the known best individuals. The error bars show the standard

deviation between the five runs, resembling very similar progressions. But naturally

the low size of repetitions has an effect on this. More conclusive statements would

require more experiments, which are scheduled as future research.

Nevertheless, we wanted to analyse the fitness’ longterm development in the exper-

iment. But simply raising the maximum number of generations was not feasible, as

the previously performed experiments already required several days of computing time

each. To run a longer evolutionary run, we reduced the number of samples (games

played) per individual from 200 down to 50 - accepting that this would increase the

fitness noise - but in return increased the population size to 30. Using the same pa-

rameters (γ = 0.5, λ = 0.5), we conducted a final experiment over 100 generations.

The fitness development can be seen in figure 10.3. It seems that the maximum fitness

stagnates around generation 50. The best individual returned by the algorithm is listed

in table 10.2and will be analysed in the following.

We can observe that diversity between the two armies is maintained by giving

player 2 access to three different (but also expensive) unit types, while player 1 only

has access to one type. Player one relies on the cheapest unit in game which is also the

unit type with the largest maximum range. Its minimum range, speed are average, and

it has the second highest health value in the game. Overall, this unit type is a versatile

168

10.1 Further experiments

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

Fi
tn

e
ss

Generation

Average

Max

Log. (Average)

Figure 10.3: Fitness development over 100 generations with (γ = 0.5, λ = 0.5). The

fitnesses of the first and last generation have a p-value < .00000000001

strong long range combat unit with a simple attack action using the constant value of

7. Furthermore, this unity type has an action to set its minimum range to 33 while

lowering its maximum range by 44 - which seems quite ineffective. Player 2 may choose

between the strongest (health) unit type in the game. This type is also the fastest in

the game but has a very narrow min-/max-range window. It may also health itself by

20 points, and has a strong attack action with a strength of 21. However, it may only

use said action if the target’s health is below 21 and its own minimum range is not 42.

It may increase its minimum range by 27 if its health is above 23. Although the values

certainly require some manual tweaking, this is fairly the most interesting mechanic we

have observed so far in the experiments.

The second unit type resembles a close combat unit with no minimum range, but

its health value is below average. It does however possess a strong healing action

which might be applied to other units. Interestingly, the target’s maximum range

must not exceed 27, and its health may not be 42. This unit type has also a minimal

169

10. OVERALL RESULTS

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

Fi
tn

e
ss

Generation

Overall Maximum Fitness

(a) Overall Maximum Fitness

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

Fi
tn

e
ss

Generations

Overall Average Fitness

(b) Overall average Fitness

Figure 10.4: Fitness developments over all five runs of the experiment using γ = 0.5, λ =

0.5. The overall maximum fitness depicts the average maximum fitness in each generation,

the overall average fitness shows the average average fitness over all runs. The error bars

represent the standard deviation in each generation.

170

10.2 Game in focus: a qualitative analysis

attack action, restricted by several conditions on its own or the target’s minimum- and

maximum range.

Similar, the last unit type player 2 may chose from is slightly faster but has less

health. The latter has an action which might be called “vampiric bite” it damages an

opponent while healing itself. This action has also some restrictions on the unit and

its target minimum range which seem rather uninteresting.

Overall, the generated actions seem very interesting but certainly require further

optimisation of their values and conditions. A final comment should be made on the

lowest individuals (< 0.4). Commonly these individuals can not be considered playable

games. They are usually totally imbalanced, e.g. an individuals with the score of 0.012

had no attack actions available on the side of player one. Units on one player’s side

could just move around, while the other player was actually able to attack and win

the game. The individual was only permitted for sampling as our model checks only

searches for at least one attack action in the model. Although an inefficient allocation

of computation resources, a low score was assigned by the balancing fitness; making

it unlikely that this individual would be considered for procreation. We do not know

what the minimum fitness in this case is to actually create playable games. It seems

more efficient to change the model checks instead in way that they search for attack

actions in both unit compositions. The individual was not assigned exactly zero, as

some games definitely ended in a draw (due to the agent’s inability to finish the game

in time) and therefore the winrate of the dominating player is not exactly 100%.

10.2 Game in focus: a qualitative analysis

We would like to conclude the result section with a qualitative analysis of the playing

experience provided by the generated games. Unfortunately, the human-experiment

discussed in section 7.4 yielded no interesting or significant results regarding the game

models. Furthermore, another user test was beyond the time frame of this dissertation.

Instead we describe an exemplary process of taking a generated game model and playing

it against our MCTS agent.

A first attempt to play a model emerges as impossible. Without meaningful anno-

tations or descriptions available, the evolutionary algorithm assigns random names to

unit classes and actions. A human player may discover the effects of each action by

simply using the trial-and-error principle – yet, this is completely impractical. Instead,

an inspection of the actual model is necessary – comparable with reading the manual

of a game. By analysing the conditions and consequences of each action manually, we

171

10. OVERALL RESULTS

were able to annotate each action and class in a meaningful way.

It became evident that the whole game evolves around manipulating maximum

ranges of the own units and the enemy units. At this point the game is playable for

a human, but ironically – as no attack action includes a range condition – maximum

ranges are meaningless, i.e. attack actions are global. The game becomes a puzzle with

the same characteristics as we observed in our balancing experiment (204), i.e. the

game is reduced to a puzzle of which units to build first and which action to use in the

correct order.

Our next step was therefore the addition of range and ammunition condition to

all actions. This creates the necessity for the combat units to approach the enemy.

In a second step we divided all maximum and minimum ranges by four to scale them

correctly to the map size.

The resulting game is an “arms race” in which the computer (or second) player

tries to disable the player’s units by increasing their minimum range. In our test game,

player one’s units have no ability to control their minimum range, therefore the units

become stranded. Their advantage however is, that they are cheaper to produce than

player two’s unit and therefore may outnumber those. This is also possible due to

resetting the health of a single unit with a low maximum range that draws the enemy

fire.

We have played a small number of games using this modified model, and use

Ritchie’s criteria novelty, quality, and typicality to discuss the output.

Novelty We see the game as P-Creative (see section 4.2) to the generating software,

as the population was not initialised with any kind of existing game models. The game

can also be considered partly H-Creative, as - to our knowledge - no game that centres

exactly around modifying shooting ranges like our game exists. But naturally, the

aspect of disabling enemy weapons has been used in previous games.

Quality If we consider the raw output of the generator, no human player would enjoy

the game due to the lack of intutive gameplay. However, the manually refined version

was reported as “acceptable” by a few test players.

Typicality The resulting gameplay is more on the “puzzle side” of strategy games,

and seems typical for turn-based strategy games of the 1990s, e.g. Battle Isle, Panzer

General, or History Line: 1914-1918. Modern games such as Civilization V rely more

on secondary economic aspects, but other game series such as Heroes of Might & Magic

retain their puzzle character in tactical combats.

172

10.3 Summary

10.3 Summary

Over the last two chapters we described how we combined the SGDL framework, in-

cluding its automated gameplay capabilities, and the described fitness functions into

a series of experiments to demonstrate the evolution of new strategy game mechanics.

We started with the evolution of a simple set of parameters which affected the balance

and playability of a simple game, compared the results of our fitness functions regarding

different game models, and ultimately evolved new Actions - forming new unit types.

The created mechanics are creative in a way, that our example models did not contain

mechanics such as altering enemy units’ max- or minimum ranges. We also saw, that

the evolved actions’ characters changed based on the weights of the two fitnesses.

We have shown that SGDL is capable to express strategy games and their common

game elements, and that it can be used to evolve these further, allowing different types

of gameplay. Even though we focussed on the evolution of Action subtrees, we believe

that this process can be applied to the complete game tree. Our artificial agents were

able to play new games within there defined boundaries, i.e. games which could be

assessed using our state evaluator function. We concluded the presentation of the

results by analysing a few game models and the resulting gamplay.

We will conclude with a discussion of the gained results and insights in the last

chapter.

173

10. OVERALL RESULTS

174

Chapter 11

Beyond tactics: Conclusions and

Discussion

Over the course of the last chapters we presented a method to specify the game me-

chanics of strategy games. As a prerequisite we tried to specify how strategy games

can be distinguished from other games, and how they are seen in other literature, to

form a definition of the genre which works for us. We then presented several experi-

ments in which our framework was used to evolve certain aspects of strategy games’

mechanics. The results indicate that our method can be used to generate interesting

(strategy) games. This also implies, that the various definitions of “interesting” (fitness

functions) used from other genres can be applied to strategy games. This seems natural

given the similarities between board- or combinatorial games. However, several direc-

tions of future research lie ahead. The last chapter will therefore discuss the insights

gained from our experiments, their limitations, and future ways of exploring this area

of research.

11.1 Modelled Games

The games we modelled in SGDL so far can be described as “very basic” strategy games.

They contain the basic elements which can be found in many strategy games despite

lacking some common features such as hidden information. We focussed on the primary

strategy game mechanics, the gameplay of warfare. And even though commercial games

offer a larger variety of primary mechanics, e.g. more units types, different attacks, etc.,

we consider the modelled games as comparable to said games. As we modelled the basic

interactions between units (attacking, moving, blocking, healing etc.) it would be easy

175

11. BEYOND TACTICS: CONCLUSIONS AND DISCUSSION

to add more unit types to our games. Although agents such as the XCS would require

anew training, agents which rely on the state evaluator function could play games with

additional unit types without a change. Our fitness function however would require

computation time. Especially the “balancing” fitness’ complexity grows exponentially

with new unit types.

As mentioned, the secondary mechanics (economic aspects; see chapter 2) are not as

complex as in commercial games. Titles such as Civilization offer a complex model of

economics and supplies. The games modelled so far therefore could be better described

as “tactical games”, as the game mechanics focus on a micro level: moving units around

and selecting the right target for shots than developing a good overall strategy. Logistics

play a minor role in our games, what resembles in an interesting anecdote: a known

flaw in Rock Wars (that players can enforce a draw by not building any units even with

enough resources left) seemed to have no impact on the experiments since we did not

encode a “skip turn” option for our agent. Although it may be beneficial in a strategy

game to not act for a given time (e.g. to wait for more resources), we designed the

agent to not break Huzinga’s magic circle, i.e. by refusing to play the agent would

reject the game rules. But such a potential exploit would be critical for a multiplayer

game. Finally, it could be easily fixed by making the factory destroyable.

We maintained the simple game mechanics mainly to allow an easier development of

the general gameplaying agents. Even with low branching factors the runtime complex-

ity, as the MCTS agent uses hundreds of playthroughs per turn. Agents which relied on

learning techniques, e.g. the XCS agent, are much faster but require extensive training

time.

However, we are confident that complexer games can be modelled in SGDL. The

principle of the language allows modular addition of new features, especially node types.

11.2 New Game Mechanics

Even though our games focussed on tactical gameplay, we consider our generation

experiments a success: we were able to generate new game mechanics for our base

game Rock Wars. The algorithm was able to create game mechanics which were not

part of the original game. The algorithm generated healer units, or units which altered

other units’ minimum or maximum shooting ranges. If we set this into context of

existing games, it is unknown if we actually created game mechanics. To speak in

terms of computational creativity: our game mechanics can be perceived as creative, as

they were unknown to the generator before. However, healer units or units which boni

176

11.3 The Strategy Games Description Language

or mali to other units have been seen in other games before. Our new game mechanics

are there not historically creative. A more thorough investigation of the generated

game mechanics and what kind of gameplay they allow seems in order.

The models we obtained, especially from the final experiments, need further manual

tweaking and playtesting to form games which are playable and enjoyable by humans.

But the algorithm was able to generate a basic game mechanics idea of using the

minimum and maximum ranges as a condition for healing, which in return could only

be altered by a second unit. If a human game designer recognises this pattern, we believe

it could be formed into an actual playable game. This supports the argument, that

SGDL can be used as an augmentation of the human creativity. The main direction of

future research lies clearly in the validation of the enjoyability of the generated models,

the question if the system generates games which can eventually be further processed by

human game designers (and under what circumstances), and the possibility of including

player preferences in the generation process. So far there is no adaptivity in our system,

generating models only for a “default” user. The next intermediate step however would

be the evolution of a whole SGDL tree, including object classes, attributes, and winning

conditions - not just actions. To summarise, the generated models were interesting but

unrefined. They could be played by artificial agents. They remain to be validated

against human player preferences.

11.3 The Strategy Games Description Language

We were able to model large parts of a strategy game, started with evolving simple

parameters, and were finally able to evolve subtrees of actions. However, this is only

an intermediate step in evolving complete strategy games’ mechanics. As outlined

above, our games and experiments focussed on the aspect of warfare. Furthermore,

our experiments did not alter the unit classes’ number of attribute. Also the winning

conditions remained unchanged, as this would have required a new state evaluator

function. In our last experiments all relevant aspects were modelled in SGDL (as

opposed to be programmed in Java code). Those behaviours which remained hardcoded

in the game engine were solely the number of players, starting positions, turn order etc.

As this is descriptive information, we believe that these features could be specified in

the SGDL root node as Meta information as well.

Other things which were ignored so far are the aspect of partial information (“fog

of war”) and non-deterministic elements. We were able to model games which followed

our definition presented in chapter 2, and we believe that the language can be extended

177

11. BEYOND TACTICS: CONCLUSIONS AND DISCUSSION

sufficiently to capture the missing aspects of strategy games. The current shortcomings

are more due to practical reasons and the project’s timescale rather than conceptual

problems. For example, nodes which couldn’t be finalised at the time of the experiments

which concerned non-deterministic effects, and area effects (“splash damage”) were

already in the testing phase. Our point here is that the language is flexible enough to

be extended on a case basis.

11.3.1 Verbosity vs. Versatility

Compared to the approaches presented in section 4.4, SGDL is very verbose, i.e. even

simple concepts such as “move n tiles to the left” require a multitude of nodes. This

is due to our design choice to model logic on a very low level. Thus even the SGDL

trees of simple games like CPRS or Rock Wars tend to grow large. The SGDL tree for

Rock Wars for example includes several hundred nodes; games like Civilization would

probably require millions of nodes. This implies that human game designers can use

SGDL only with the help of (visual) editing software. In practice, this is irrelevant

once a working toolchain has been developed.

From our own experience, SGDL trees are easily comprehensible on a micro level,

as described in the introduction of chapter 5. A person familiar with SGDL was able to

quickly tell what an Action “does” just by looking a the subtree’s visual representation.

On the other hand, we think that the highlevel design of SGDL trees requires additional

discussion. Our internal tests showed, that even persons familiar with SGDL had

difficulties to keep track of the functions of subtrees in larger models, and how unit types

and other aspects interacted: our current visualiser for SGDL trees allows zooming in

and out of SGDL trees. While it easy to recognise the pattern of an “attack” action

when all the required nodes are clearly visible on screen, it is harder when zoomed out.

We discussed different approaches to make SGDL trees more accessible on macro level.

One direction would be, to encode high-level concepts into their own node types, e.g.

attack actions, and therefore substitute subtrees with a single node. This would give

designers a “shortcut” to easily add basic – reoccurring – concepts into their game.

And by reducing the numbers per SGDL model we would also reduce the number of ill-

defined trees produced by our various evolutionary algorithms. The amount of potential

meaningless subtrees, often referred to as “bloat”, affect the algorithm’s efficiency to

drop very abstract or unplayable games. Ultimately, adding additional node types

would not limit SGDL’s versatility, as behaviour – which is not encoded in a high-level

node may still be encoded manually.

The conclusion here seems to be, that the increased verbosity as a result of the

178

11.4 The SGDL Framework

desired versatility is merely a problem of representation. A different approach would

be introducing high-level nodes only in the editor, so designers can group nodes on a

visual level, while the actual tree still contains all the low-level nodes. This however

would not solve the resource overhead of a model-based game engine, i.e. implementing

the game mechanics directly in code would always be faster. This however would not

be a problem for the everyday use of SGDL: prototyping and debugging of games. In

early design phases of a game project, runtime performance may be negligible.

11.4 The SGDL Framework

The current version of the SGDL game engine has some shortcomings which prevent it

from being released to the public in its current form. The main reasons are usability

issues. Even though our game engine can load any game which is modelled in the current

SGDL version, we have no intuitive mechanism to communicate what the abilities of

units are to the player, or what his legal moves are. In our online experiment we tried to

solve this by supplying a textual description of the game and a short tutorial to describe

the game. Legal actions were communicated through context menus: whenever a player

clicked on one of his units, the engine did a combinatorial test of all actions of that

unit’s class and all objects on the board. For each action which condition tree returned

“true” an item was displayed in the context menu. This approach of using context

menus breaks with the common genre convention that units, targets, etc. are directly

selected with the mouse. Several players in our online experiment mentioned this aspect

negatively. We also tested a mouse based approach for our Dune II prototype (which

was not finalised at the time of writing). But the development of our Dune II prototype

was halted, as the development of an flexible and usable interface from scratch consumed

too much time in the project plan. It should be added though, that the context menu

based approach enabled the player to use arbitrary actions modelled in SGDL – just not

in an intuitive way. This was also caused by the fact, that the SGDL engine is not able

to visualise effects of actions beyond textual log files (“Unit A’s health is now 14”). This

may be sufficient for debugging and prototyping a game, but it seems inappropriate for

playtesting it. The problem here is, that the SGDL engine has no a priori knowledge

about what an unit or action “does” to visualise it. We approached this problem by

manually annotating the SGDL model used for our online experiment, specifying that

attack actions should be visualised in the form of a laser beam. The SGDL engine is

developed to a point, that a human game designer may manually specify which graphics

(3D models, effects, etc.) should be used for unit- or building types or the effect of

179

11. BEYOND TACTICS: CONCLUSIONS AND DISCUSSION

actions. The automatic generation of asset sets and graphical user interfaces based on

SGDL models would be an interesting direction of future research though.

11.5 Computational Complexity

Developing agents which can play the modelled games on an adequate level and simulate

different playing styles posed a greater challenge than initially expected. But ultimately,

we were able to develop agents which were able to play our agents on a sufficient level.

The data gathered through our online experiment shows, that the agents were at least

able to win 21% of games played and it is not trivial to beat them.

11.5.1 Status of the General Gameplaying Agents

The agents we developed are capable of playing the game and winning it. We saw

different learning rates and performance in terms of win rate against bots and human

players. All bots were capable of beating the heuristic and a random player significantly.

The main limitations of most bots however is, that they rely on a board evaluator

function that is specifically tailored to a certain objective: removing enemy units from

the board, and winning the game by disposing all enemy units. Although board games

exists where the players’ goal is to lose all their game pieces, e.g. the chess variant

Antichess1. We consider these as the exceptions, and the authors are not aware of any

commercial digital strategy game of this type. However, this remains a restriction.

The performance of our agents is limited by the high branching factor of a strat-

egy game game tree. The large number of units combined with a large number of

possible options make a complete search infeasible, and the main effort in this area of

research should lie on the efficient pruning of unpromising move options. The claim

that, “strategy” implies “considering all options” brought up in section 2, seems to fall

short of practicality. While employing pruning techniques such as UCT help to reduce

the computational costs, a full exploration of the possibility space is still impractical.

Human-likeness Another thing which was not fully explored during the development

of the agent was the goal to create agents which imitate human play. While technically

artificial agents mimic how human players interact with a game, our agents have no

models of emotions or other physiological characteristics which could for example affect

response times or overview of the game, i.e. our agents never forget to move a unit

simply because it is not currently visible on screen. The goal to implement agents

1The goal of the game is loose all game pieces but the king

180

11.6 Human studies

which imitate human-like responses was not explored for practical reasons: balancing

the workload between project members. It would be interesting though to create a

cognitive and emotional model which can be applied to strategy games. The application

of existing models (as presented in chapter 3) might be an option. Although we have

seen some differentiation in how human players perceive bots as “human-like” (please

refer to figure 7.7), the data sample of 60 players seems to small to draw generalisable

conclusions. Yet, we can only speculate what caused these differences, i.e. how can a

playing style be characterised as human-like, and how can it be consciously achieved.

For example, the NEAT agent played a very defensive strategy in Rock Wars with

simply lining up all his units in his base and waiting for the enemy. From personal

experience of the authors, this is a common tactic used by novice players in strategy

games, who like to dig themselves in and try to wear of the opponent. Although this

is a tactic played by human players, the NEAT agent received a low “human-likeness”

score (27.78%). As a conclusion, we see great potential for future research in human-like

strategy game bots. It should be noted, that academic conferences12 already organise

bot competitions for various games. While the Starcraft competitions focus more on

win-ability (at the time of writing all published bots could be beaten easily by expert

players), the 2K Bot Prize3 uses a setup for Unreal Tournament similar to a Turing-

test. Similar to the original Turing-test, where participants have to guess if they are

chatting with a human or if an algorithm is generating chat responses, players have to

judge if the movement and actions in a first-person shooter are controlled by a bot or

a human player.

11.6 Human studies

Another result of our study using human play-testers was that the enjoyability of the

agent strongly correlated with the enjoyability of the selected SGDL model. The re-

sults of the question: “Disregarding the opponent, which game did you prefer?” were

therefore removed from the analysis. We believe this was due to a flaw in the ex-

periment setup: participants were not aware that the parameters of the game models

were actually changing between games, and focussed solely on the agents’ behaviour.

The differences between game models were too subtle. More conclusive results may be

achieved by using SGDL models which significantly differ more from each other. The

other possible conclusion, that the enjoyment purely depends on the opponent rather

1CIG 2012 http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2012
2AIIDE 2012 http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
32K Bot Prize http://botprize.org/

181

http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2012
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
http://botprize.org/

11. BEYOND TACTICS: CONCLUSIONS AND DISCUSSION

than the game played, seems unlikely. In practice, people will eventually develop a

preference for one game over another even if they play against the same person.

The most frequent comment given by players in the free text comment field con-

cerned the user interface (as discussed in section 11.4). It seems evident, that the short-

comings affected the playing experience in a negative way. Even though most players

gave it the benefit of being an academic experiment rather than a commercial released

and polished game. Most comments concerned the unintuitive action selection, and a

context sensitive click system is considered a genre standard. As a conclusion, the next

pending experiment, using our own implementation of Dune II, will therefore address

these two main concerns: the lack of an intuitive interface, by implementing a variant

of the original interface, and presenting participants two game models: a SGDL model

of the original game, and a second one with a significant variation of the first model.

This will enable us to validate the applicability of the fitness functions (presented in

section 8) to strategy games. Our hypothesis is, that the fitness scores generated by

our fitness functions will correlate with human players’ preferences. Choosing only one

agent for both games should remove the effect of the different playing styles.

11.7 Data Driven Evolution

The fitness functions used so far all rely on expert knowledge. Our own definition

of “Balance” was based on our own experience and anecdotal evidence gained from

strategy games’ communities and media. Like the “thrill” measurement it has yet

to be verified that the functions’ results correlate with human players’ preferences.

Browne’s “lead changes” fitness was originally tested against the preferences of human

players, but has yet to be validated for strategy games. The flaw in our experiment

with human players, as described in the previous section, prevented us from gaining

significant insights on these questions. Expert knowledge may be biased and may not

resemble other players’ preferences and skill levels. Some players prefer an easily beat-

able opponent, other players demand a challenge, some players enjoy a slow pace game

where they can focus on building an aesthetic pleasing base, and other players focus

on fast paced tactical combat. The list of possible dimensions could be extended in

various ways. Our point here is, that it may be beneficial to connect the research

on strategy game mechanics generation with the field of player experience modelling.

Models of emotions or motivations may help to generate strategy games which are

tailored to a specific player or just more appealing to players in general. Possible

data sources found in published research range from self-reported data, physiological

182

11.8 Lessons learned

measurements (94, 206), gaze data (207) and qualitative case-studies (208, 209) to au-

tomatically collected gameplay data from within the game. The application of machine

learning techniques to in-game data (also: game metrics mining) has become popular in

recent times(210, 211, 212). Data mining algorithms have been proven to be successful

in elicitating new information about how players interact with the game world. As we

have published in this area of research ourselves (213), we believe that this would be

a promising direction of future research; to validate the fitness functions used in our

previous research.his area.

We envision an extended system, based upon the knowledge we gathered in our

initial experiments: a development kit based on SGDL which enables interested indi-

viduals to create and share strategy games on a dedicated website. Interested players

can use our game engine to download and play the shared games. As the platform will

be open to the public are the roles of designers and players interchangeable, forming

a gaming community. Additionally, the shared games can be used as a basis for our

evolutionary process.

There are two additional features we envision: an integrated instrumentation frame-

work which provides detailed quantitative feedback about the playing experience. The

gathered player metrics will be analysed with state of the art computational intel-

ligence/data mining techniques. And secondly, the created games can be used as a

competition framework for artificial agents. Similar to the Starcraft competitions men-

tioned earlier in this chapter, we believe that creating agents for arbitrary strategy

games might be an interesting challenge for programmers.

11.8 Lessons learned

The work presented in this thesis demonstrates that it is generally possible to generate

strategy game mechanics using an evolutionary algorithm. The domain specific lan-

guage (SGDL) is capable of representing games on the required level of detail. The

agent framework is able to play a set of games (the ones where our board evaluator

function is applicable to) but still can’t handle “any” game expressed in SGDL.

The computational costs to learn or even to play a game are enormous. Especially

the experiments with the “thrilling” fitness consumed massive amounts of computation

time. The computational cost has been underestimated at some points in the project.

The evolutionary experiments showed, that the SGDL trees suffer from the known

problem of “bloat”, the fill of SGDL trees with irrelevant nodes. These models ini-

tially wasted a lot of computing time until we implemented the offline model checks.

183

11. BEYOND TACTICS: CONCLUSIONS AND DISCUSSION

Overall, fitness functions that take such long time to compute make it difficult to ex-

periment with the parameters of the evolutionary algorithm. Investing more time in

developing offline model checks would make the evolutionary process more efficient, but

implementing domain specific knowledge might also reduce the diversity of the result

it produces.

The Dune 2 map generator is a nice addition to the project, but the time might have

been better spent on the optimisation of the framework. Nevertheless, it demonstrates

from a different angle, that commercial strategy games can be expressed in SGDL.

Overall, we should consider that this is a research project and not product development.

Some turns and twists in the milestone planning seem acceptable.

From a technical point of view, the decision to implement everything in Java was the

right one; especially in regard of the project members knowledge of the technology. This

made it also comparably easy to create the online experiment, as we just transferred the

SGDL engine into an applet context. Ultimately, we do not recommend of implementing

such a complex project in any unmanaged language, even though this is clearly possible.

184

11.9 Concluding Remarks

11.9 Concluding Remarks

The SGDL framework presented in this thesis stands as initial research in the area

of strategy games generation. The modelling capability and the results gained from

our experiments are promising and suggest further research in this area. We believe,

that the insights gained in our research should encourage researchers and industry

alike to develop further into the area of personalised generated game content, game

mechanics in particular. We demonstrated that it is possible to generate aspects of

strategy games gameplay using expert knowledge, and argued that our findings could

be transferred to commercially produced games as well. Yet, the used fitness functions

require improved framing; game metrics mining from online player data seems one

potential future direction. Given the success of commercial success of Zillion of Games,

Game Maker, and other game creation kits - we believe a release of the SGDL tool-kit

to an interested public would be large success. Afterall, strategy games are a popular

genre, and no comparable specialised products seem to exist.

185

11. BEYOND TACTICS: CONCLUSIONS AND DISCUSSION

186

References

[1] Martin Lorber. Transformation der Industrie,

Aug 2012. Available from: http://spielkultur.ea.de/

kategorien/wirtschaft/transformation-der-industrie. 2

[2] German Trade Association of Interactive En-

tertainment Software (BIU). Die deutsche

Gamesbranche 2011, 2012. Available from:

http://www.biu-online.de/de/fakten/marktzahlen/

die-deutsche-gamesbranche-2011.html. 2

[3] Julian Togelius, Georgios N. Yannakakis, Kenneth O.

Stanley, and Cameron Browne. Search-Based Pro-

cedural Content Generation. In EvoApplications,

pages 141–150, 2010. 3, 5, 50

[4] Jennifer Johns. Video games production networks:

value capture, power relations and embedded-

ness. Journal of Economic Geography, 6:151–180, 2005.

3

[5] Steven Poole. Bang, bang, you’re dead:

how Grand Theft Auto stole Hollywood’s

thunder. Online, Mar 2012. Available from:

http://www.guardian.co.uk/technology/2012/mar/09/

grand-theft-auto-bang-bang-youre-dead. 3

[6] L.A. Times. Star Wars: The Old Re-

public — the story behind a galac-

tic gamble. Online, Jan 2012. Available

from: http://herocomplex.latimes.com/2012/01/20/

star-wars-the-old-republic-the-story-behind-a-galactic-gamble/

#/0. 3

[7] Jason Wilson. Indie Rocks! Mapping Independent

Video Game Design. Media International Australia,

Incorporating Culture & Policy, 115:109–122, May 2005.

3

[8] Georgios N. Yannakakis and Julian Togelius.

Experience-Driven Procedural Content Gener-

ation. Affective Computing, IEEE Transactions on,

2(3):147–161, July 2011. 5

[9] B.G. Weber, M. Mateas, and A. Jhala. Using data min-

ing to model player experience. In FDG Workshop

on Evaluating Player Experience in Games, Bordeaux,

June 2011. ACM. 5

[10] C. Pedersen, J. Togelius, and G.N. Yannakakis. Mod-

eling Player Experience for Content Creation.

IEEE Transactions on Computational Intelligence and AI

in Games, 2(1):54 –67, march 2010. 5

[11] Johan Hagelbäck and Stefan Johansson. A Multi-

agent Potential Field based bot for a Full RTS

Game Scenario. International Journal of Computer

Games Technology, 2009:1–10, 2009. 9, 120

[12] G. Synnaeve and P. Bessiere. A Bayesian model for

opening prediction in RTS games with applica-

tion to StarCraft. In Computational Intelligence and

Games (CIG), 2011 IEEE Conference on, pages 281 –

288, 31 2011-sept. 3 2011. 9

[13] Ben G. Weber, Michael Mateas, and Arnav Jhala. Ap-

plying Goal-Driven Autonomy to StarCraft. In

AAAI Conference on Artificial Intelligence and Interac-

tive Digital Entertainment, 2010. 9

[14] M. van der Heijden, S. Bakkes, and P. Spronck. Dy-

namic formations in real-time strategy games.

In IEEE Symposium On Computational Intelligence and

Games, pages 47 –54, December 2008. 9

[15] István Szita, Guillaume Chaslot, and Pieter Spronck.

Monte-Carlo Tree Search in Settlers of Catan.

In H. van den Herik and Pieter Spronck, editors, Ad-

vances in Computer Games, 6048 of Lecture Notes in

Computer Science, pages 21–32. Springer Berlin / Hei-

delberg, 2010. 9, 57

[16] Robin Baumgarten, Simon Colton, and Mark Morris.

Combining AI Methods for Learning Bots in a

Real-Time Strategy Game. International Journal of

Computer Games Technology, 2009:10, 2009. 9, 63

[17] S. Wender and I Watson. Using reinforcement learn-

ing for city site selection in the turn-based strat-

egy game Civilization IV. In IEEE Symposium

Computational Intelligence and Games, pages 372 –377,

2008. 9

[18] David Aha, Matthew Molineaux, and Marc Ponsen.

Learning to Win: Case-Based Plan Selection in a

Real-Time Strategy Game. In Héctor Muñoz-Ávila

and Francesco Ricci, editors, Case-Based Reasoning Re-

search and Development, 3620 of Lecture Notes in Com-

puter Science, pages 5–20. Springer Berlin / Heidelberg,

2005. 9

[19] D. Churchill and M. Buro. Build Order Optimiza-

tion in StarCraft. In Seventh Artificial Intelligence

and Interactive Digital Entertainment Conference, 2011.

9

[20] Alberto Uriarte Pérez. Multi-Reactive Planning for

Real-Time Strategy Games. Master’s thesis, Universi-

tat Autònoma de Barcelona, 2011. 9

[21] Pedro Cadena and Leonardo Garrido. Fuzzy Case-

Based Reasoning for Managing Strategic and

Tactical Reasoning in StarCraft. In Ildar Batyrshin

and Grigori Sidorov, editors, Advances in Artificial In-

telligence, 7094 of Lecture Notes in Computer Science,

pages 113–124. Springer Berlin / Heidelberg, 2011. 9

[22] Mark Claypool. The effect of latency on user per-

formance in Real-Time Strategygames. Computer

Networks, 49(1):52–70, September 2005. 9

187

http://spielkultur.ea.de/kategorien/wirtschaft/transformation-der-industrie
http://spielkultur.ea.de/kategorien/wirtschaft/transformation-der-industrie
http://www.biu-online.de/de/fakten/marktzahlen/die-deutsche-gamesbranche-2011.html
http://www.biu-online.de/de/fakten/marktzahlen/die-deutsche-gamesbranche-2011.html
http://www.guardian.co.uk/technology/2012/mar/09/grand-theft-auto-bang-bang-youre-dead
http://www.guardian.co.uk/technology/2012/mar/09/grand-theft-auto-bang-bang-youre-dead
http://herocomplex.latimes.com/2012/01/20/star-wars-the-old-republic-the-story-behind-a-galactic-gamble/#/0
http://herocomplex.latimes.com/2012/01/20/star-wars-the-old-republic-the-story-behind-a-galactic-gamble/#/0
http://herocomplex.latimes.com/2012/01/20/star-wars-the-old-republic-the-story-behind-a-galactic-gamble/#/0

REFERENCES

[23] Chris Chambers, Wu-chang Feng, Wu-chi Feng, and De-

banjan Saha. Mitigating information exposure to

cheaters in real-time strategy games. In Proceed-

ings of the international workshop on Network and oper-

ating systems support for digital audio and video, NOSS-

DAV ’05, pages 7–12, New York, NY, USA, 2005. ACM.

9

[24] Harold J. Murray. The History of Chess. Oxford Uni-

versity Press, 1913. 10

[25] John M. Roberts, Malcolm J. Arth, and Robert R.

Bush. Games in Culture. American Anthropologist,

61(4):597–605, 1959. 10

[26] J. Huizinga. Homo Ludens: Proeve eener bepaling van het

spel-element der Cultuur. Amsterdam University Press,

2010. 10, 134

[27] Rolf F. Nohr and Serjoscha Wiemer. Strategie Spie-

len. In Strategie Spielen, Braunschweiger Schriften zur

Medienkultur, pages 7–27. Lit Verlag Berlin, 2008. 10,

149

[28] Niklas Luhmann. Die Praxis der Theorie. Soziale

Welt, 20(2):129–144, 1969. 10

[29] Norbert Elias. Über den Prozess der Zivilisation : sozio-

genetische und psychogenetische Untersuchungen / Nor-

bert Elias. Haus Zum Palken, Basel :, 1939. 11

[30] Antonio Damasio. Descartes’ Error: Emotion, Reason,

and the Human Brain. Harper Perennial, 1995. Avail-

able from: http://www.worldcat.org/isbn/014303622X. 11

[31] Oskar Morgenstern and John von Neumann. Theory

of games and economic behavior. Princeton University

Press, 1944. 11

[32] Rolf F. Nohr. Krieg auf dem Fussboden. In Strate-

gie Spielen, Braunschweiger Schriften zur Medienkul-

tur, pages 29–68. Lit Verlag Berlin, 2008. 12, 14, 16

[33] Thomas Lemke. Foucault, Governmentality, and

Critique. Rethinking Marxism, 14(3):49–64, 2002. 12

[34] J. Link. Versuch über den Normalismus: Wie Normalität

produziert wird. Historische Diskursanalyse der Liter-

atur. Vandenhoeck & Ruprecht, 2009. 13

[35] Ramón Reichert. Goverment-Games und Gou-

vertainment. In Strategie Spielen, Braunschweiger

Schriften zur Medienkultur, pages 189–212. Lit Verlag

Berlin, 2008. 13

[36] Marcus Power. Digitized virtuosity : video war

games and post-9/11 cyber-deterrence. Security

dialogue, 38(2):271–288, June 2007. 13

[37] Sebastian Deterding. Wohnzimmerkriege. In Strate-

gie Spielen, pages 29–68. Lit Verlag Berlin, 2008. 13,

14, 15, 17

[38] J.C.L. Hellwig. Versuch eines aufs schachspiel gebaueten

taktischen spiels von zwey und mehrern personen zu spie-

len. S. L. Crusius, 1780. Available from: http://books.

google.dk/books?id=Gi8XAAAAYAAJ. 14

[39] O. Büsch and W. Neugebauer. Moderne Preussische

Geschichte 1648-1947. de Gruyter, 1981. 14

[40] Peter H. Wilson. Social Militarization in

Eighteenth-Century Germany. German History,

18(1):1–39, 2000. 15

[41] James F. Dunningham. Wargames Handbook. iUniverse,

3rd edition, January 2000. 15

[42] Peter Perla. The Art of Wargaming: A Guide for Pro-

fessionals and Hobbyists. US Naval Institute Press, 1st

edition, March 1990. 15

[43] Origins Game Fair. Origins 2012 Recap. Online.

[Online; accessed 17-September-2012]. Available from:

http://www.originsgamefair.com/. 15

[44] J. R. R. Tolkien. The lord of the rings. Allen & Unwin,

London, 2nd edition, 1966. 16

[45] Marshall McLuhan. Die magischen Kanäle. Verlag der

Kunst Dresden, 2nd edition edition, 1995. 17

[46] Chris Crawford. The Future of Wargaming. Com-

puter Gaming Worlds, 1(1):3–7, 1981. 18

[47] Jon Lau Nielsen, Benjamin Fedder Jensen, Tobias

Mahlmann, Julian Togelius, and Georgios N. Yannakakis.

AI for General Strategy Game Playing. IEEE Handbook

of Digital Games. IEEE, 2012. 18, 109, 149

[48] Nicole Lazzaro. The Four Fun Keys, pages 317–343.

Morgan Kaufmann Pub, 2008. 24

[49] Thomas W. Malone. What makes things fun to

learn? heuristics for designing instructional

computer games. In Proceedings of the 3rd ACM

SIGSMALL symposium and the first SIGPC symposium

on Small systems, SIGSMALL ’80, pages 162–169, New

York, NY, USA, 1980. ACM. 24

[50] J. Juul. Half-real: Video games between real rules and

fictional worlds. The MIT Press, 2005. 25

[51] Wikipedia. Snakes and Ladders — Wikipedia,

The Free Encyclopedia, 2011. [Online; accessed 15-

September-2011]. Available from: http://en.wikipedia.

org/w/index.php?title=Snakes_and_Ladders. 25

[52] C.E. Shannon and W. Weaver. The mathematical theory

of information. University of Illinois Press, 1949. 25,

37, 142

[53] Wijnand Ijsselsteijn, Yvonne de Kort, Karolien Poels,

Audrius Jurgelionis, and Francesco Bellotti. Charac-

terising and Measuring User Experiences in Dig-

ital Games. In International Conference on Advances

in Computer Entertainment, June 2007. 25

[54] Wikipedia. SpaceChem — Wikipedia, The Free

Encyclopedia, 2011. [Online; accessed 15-August-

2011]. Available from: http://en.wikipedia.org/w/index.

php?title=SpaceChem. 25

[55] Richard Bartle. Hearts, Clubs, Diamonds, Spades:

Players Who Suit MUDs, 1996. 25

[56] Matthias Rauterberg. Enjoyment and Entertain-

ment in East and West. In Matthias Rauterberg,

editor, Entertainment Computing – ICEC 2004, 3166

of Lecture Notes in Computer Science, pages 176–181.

Springer Berlin / Heidelberg, 2004. 25

188

http://www.worldcat.org/isbn/014303622X
http://books.google.dk/books?id=Gi8XAAAAYAAJ
http://books.google.dk/books?id=Gi8XAAAAYAAJ
http://www.originsgamefair.com/
http://en.wikipedia.org/w/index.php?title=Snakes_and_Ladders
http://en.wikipedia.org/w/index.php?title=Snakes_and_Ladders
http://en.wikipedia.org/w/index.php?title=SpaceChem
http://en.wikipedia.org/w/index.php?title=SpaceChem

REFERENCES

[57] Wijnand IJsselsteijn, Wouter van den Hoogen, Christoph

Klimmt, Yvonne de Kort, Craig Lindley, Klaus Math-

iak, Karolien Poels, Niklas Ravaja, Marko Turpeinen,

and Peter Vorderer. Measuring the Experience of

Digital Game Enjoyment. In Andrew SpinkMechteld

Ballintijn Natasja Bogers Fabrizio GriecoLeanne Loi-

jensLucas NoldusGonny Smit Patrick Zimmerman, editor,

Measuring Behavior 2008, International Conference on

Methods and Techniques in Behavioral Research, Maas-

tricht, The Netherlands, August 2008. 26

[58] R. Likert. A technique for the measurement of

attitudes. Archives of Psychology, 22(140):1–55, 1932.

26

[59] G. N. Yannakakis. Preference Learning for Affective

Modeling. In Proceedings of the Int. Conf. on Affective

Computing and Intelligent Interaction, Amsterdam, The

Netherlands, September 2009. 26

[60] Bashar Nuseibeh and Steve Easterbrook. Require-

ments engineering: a roadmap. In Proceedings of the

Conference on The Future of Software Engineering, ICSE

’00, pages 35–46, New York, NY, USA, 2000. ACM. 27

[61] Betty H. C. Cheng and Joanne M. Atlee. Research Di-

rections in Requirements Engineering. In 2007 Fu-

ture of Software Engineering, FOSE ’07, pages 285–303,

Washington, DC, USA, 2007. IEEE Computer Society.

27

[62] Bronislaw Malinowski. Argonauts Of The Western Pa-

cific. George Routledge And Sons, Limited, 1932. 27

[63] C. Geertz. Deep Play: Notes on the Balinese Cockfight.

American Academy of Arts and Sciences, 1972. 27

[64] Timothy C. Lethbridge, Susan Elliott Sim, and Janice

Singer. Studying Software Engineers: Data Col-

lection Techniques for Software Field Studies.

Empirical Software Engineering, 10(3):311–341, 2005.

27

[65] Mark Chen. Leet Noobs: Expertise and Collaboration in

a ”World of Warcraft” Player Group as Distributed So-

ciomaterial Practice. PhD thesis, University of Wash-

ington, 2010. 28

[66] TL Taylor and E. Witkowski. This is how we play

it: what a mega-LAN can teach us about games.

In Proceedings of the Fifth International Conference on

the Foundations of Digital Games, pages 195–202. ACM,

2010. 28

[67] J. Juul. A Casual Revolution: Reinventing Video Games

and Their Players. MIT Press, 2010. 28

[68] C.A. Lindley and C. Sennersten. A cognitive frame-

work for the analysis of game play: tasks,

schemas and attention theory. In Workshop on the

cognitive science of games and game play, the 28th an-

nual conference of the cognitive science society, 2006. 29

[69] C.A. Lindley and C. Sennersten. Game play schemas:

from player analysis to adaptive game mechan-

ics. International Journal of Computer Games Technol-

ogy, 2008:1–7, 2008. 29

[70] C.A. Lindley, L. Nacke, and C.C. Sennersten. Dis-

secting play-investigating the cognitive and emo-

tional motivations and affects of computer game-

play. In CGAMES08. Citeseer, 2008. 29

[71] Mihaly Csikszentmihalyi. Flow: The Psychology of Op-

timal Experience. Harper Perennial, New York, NY,

March 1991. 29

[72] Marios Koufaris. Applying the Technology Ac-

ceptance Model and Flow Theory to Online

Consumer Behavior. Information Systems Research,

13(2):205–223, 2002. 30

[73] Jawaid A. Ghani and Satish P. Deshpande. Task Char-

acteristics and the Experience of Optimal Flow

in Human—Computer Interaction. The Journal of

Psychology, 128(4):381–391, 1994. 30

[74] Penelope Sweetser and Peta Wyeth. GameFlow: a

model for evaluating player enjoyment in games.

Comput. Entertain., 3:3–3, July 2005. 30, 33

[75] Penelope Sweetser, Daniel Johnson, Peta Wyeth, and

Anne Ozdowska. GameFlow heuristics for design-

ing and evaluating real-time strategy games. In

Proceedings of The 8th Australasian Conference on Inter-

active Entertainment: Playing the System, IE ’12, pages

1:1–1:10, ew York, NY, USA, 2012. ACM. 31

[76] Raph Koster. A theory of fun for game design. Paraglyph

press, 2005. 31, 44, 45, 142

[77] Barry Kort, Rob Reilly, and Rosalind W. Picard. An

Affective Model of Interplay Between Emo-

tions and Learning: Reengineering Educational

Pedagogy-Building a Learning Companion. In In,

pages 43–48. IEEE Computer Society, 2001. 31

[78] Hope R. Conte and Robert Plutchik. A circumplex

model for interpersonal personality traits. Journal

of Personality and Social Psychology, 40(4):701 – 711,

1981. 31

[79] K. Leidelmeijer. Emotions : an experimental approach /

Kees Leidelmeijer. Number 9. Tilburg University Press,

[Tilburg] :, 1991. 31

[80] Paul Ekman. An argument for basic emotions. Cog-

nition & Emotion, 6(3):169–200, 1992. 31

[81] R W Picard, S Papert, W Bender, B Blumberg,

C Breazeal, D Cavallo, T Machover, M Resnick, D Roy,

and C Strohecker. Affective Learning — A Mani-

festo. BT Technology Journal, 22:253–269, 2004. 31

[82] Rosalind W. Picard and Jonathan Klein. Computers

that recognise and respond to user emotion: the-

oretical and practical implications. Interacting with

Computers, 14(2):141 – 169, 2002. 31

[83] M. Mori, K.F. MacDorman (Translator), and T. Mi-

nato (Translator). The uncanny valley. Energy,

7(4):33–35, 2005. 32

[84] Scott Brave, Clifford Nass, and Kevin Hutchinson.

Computers that care: investigating the effects

of orientation of emotion exhibited by an embod-

ied computer agent. International Journal of Human-

Computer Studies, 62(2):161 – 178, 2005. 32

189

REFERENCES

[85] N. Ravaja, M. Salminen, J. Holopainen, T. Saari,

J. Laarni, and A. J

”arvinen. Emotional response patterns and sense

of presence during video games: potential crite-

rion variables for game design. In Proceedings of the

third Nordic conference on Human-computer interaction,

pages 339–347. ACM, 2004. 32

[86] Laura Ermi and Frans Mäyrä. Fundamental com-

ponents of the gameplay experience: Analysing

immersion. Proceedings of the DiGRA Conference,

18(35):15–27, 2005. 33

[87] Emily Brown and Paul Cairns. A grounded investi-

gation of game immersion. In CHI ’04 extended ab-

stracts on Human factors in computing systems, CHI EA

’04, pages 1297–1300, New York, NY, USA, 2004. ACM.

33

[88] Gordon Calleja. Digital games as designed experience:

Reframing the concept of immersion. PhD thesis, Victo-

ria University of Wellington, 2007. 33

[89] G.N. Yannakakis and J. Hallam. Evolving opponents

for interesting interactive computer games. From

animals to animats, 8:499–508, 2004. 34

[90] G.M. Wilson and M.A. Sasse. Investigating the im-

pact of audio degradations on users: Subjective

vs. Objective assessment methods. In Proceedings

of OZCHI, 4, pages 135–142. Citeseer, 2000. 36

[91] G.M. Wilson. Psychophysiological indicators of the

impact of media quality on users. In CHI’01 ex-

tended abstracts on Human factors in computing systems,

pages 95–96. ACM, 2001. 36

[92] Anders Drachen, Lennart E. Nacke, Georgios Yan-

nakakis, and Anja Lee Pedersen. Correlation between

heart rate, electrodermal activity and player ex-

perience in first-person shooter games. In Proceed-

ings of the 5th ACM SIGGRAPH Symposium on Video

Games, Sandbox ’10, pages 49–54, New York, NY, USA,

2010. ACM. 36

[93] Regan L. Mandryk and Kori M. Inkpen. Physiological

indicators for the evaluation of co-located col-

laborative play. In Proceedings of the 2004 ACM con-

ference on Computer supported cooperative work, CSCW

’04, pages 102–111, New York, NY, USA, 2004. ACM.

37

[94] G.N. Yannakakis and J Hallam. Entertainment mod-

eling through physiology in physical play. Interna-

tional Journal of Human-Computer Studies, 66(10):741–

755, 2008. 37, 183

[95] Cameron Browne. Automatic generation and evaluation

of recombination games. PhD thesis, Queensland Uni-

versity of Technology, 2008. 38, 69, 144

[96] George David Birkhoff. Aesthetic Measure. Harvard

University Press, 1933. 38

[97] Barney Darryl Pell. Strategy Generation and Eval-

uation for Meta-Game Playing. Technical report,

Trinity College; in the University of CambridgeS, 1993.

38

[98] Wikipedia. Dynamic game difficulty balanc-

ing — Wikipedia, The Free Encyclopedia,

2011. [Online; accessed 16-September-2011]. Avail-

able from: http://en.wikipedia.org/w/index.php?title=

Dynamic_game_difficulty_balancing. 40

[99] Ryan B. Hayward and Jack van Rijswijck. Hex

and combinatorics. Discrete Mathematics, 306(19-

20):2515 – 2528, 2006. 40

[100] J. Mark Thompson. Defining the Abstract. The

Games Journal, 2007. [Online; accessed 16-September-

2011]. Available from: http://www.thegamesjournal.com/

articles/DefiningtheAbstract.shtml. 41

[101] Jürgen Schmidhuber. Formal Theory of Creativity,

Fun, and Intrinsic Motivation (1990-2010). Au-

tonomous Mental Development, IEEE Transactions on,

2(3):230 –247, sept. 2010. 42, 43

[102] M. Li and P. Vitanyi. An introduction to Kolmogorov

complexity and its applications. Springer, 1993. 42

[103] Jürgen Schmidhuber. Developmental robotics, opti-

mal artificial curiosity, creativity, music, and the

fine arts. Connection Science, 18(2):173–187, 2006. 43

[104] J. Togelius and J. Schmidhuber. An experiment in au-

tomatic game design. In Computational Intelligence

and Games, 2008. CIG ’08. IEEE Symposium On, pages

111 –118, dec. 2008. 44, 71

[105] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering.

Simple Principles Of Metalearning. Technical re-

port, SEE, 1996. 44

[106] S. R. K. Branavan, David Silver, and Regina Barzilay.

Learning to win by reading manuals in a Monte-

Carlo framework. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguis-

tics: Human Language Technologies - Volume 1, HLT

’11, pages 268–277, Stroudsburg, PA, USA, 2011. As-

sociation for Computational Linguistics. 44, 60

[107] Miguel Sicart. Defining Game Mechanics. Game

Studies, 8(2):1–14, 2008. Available from: http://

gamestudies.org/0802/articles/sicart. 44, 47

[108] Elliot M. Avedon. The Study of Games, chapter The

Structural Elements of Games. New York, NY: John

Wiley & Sons, 1971. 45

[109] A. Järvinen. Games without frontiers: methods for game

studies and design. VDM, Verlag Dr. Müller, 2009. 45,

47

[110] Katie Salen and Eric Zimmerman. Rules of play: Game

design fundamentals. MIT Press, Boston, 2003. 45, 46,

47, 134

[111] J. Edward Russo, Kurt A. Carlson, and Margaret G.

Meloy. Choosing an Inferior Alternative. Psycho-

logical Science, 17(10):899–904, 2006. 45

[112] José Pablo Zagal, Michael Mateas, Clara Fernández-

Vara, Brian Hochhalter, and Nolan Lichti. Towards

an Ontological Language for Game Analysis. In

DIGRA Conf., 2005. 45

190

http://en.wikipedia.org/w/index.php?title=Dynamic_game_difficulty_balancing
http://en.wikipedia.org/w/index.php?title=Dynamic_game_difficulty_balancing
http://www.thegamesjournal.com/articles/DefiningtheAbstract.shtml
http://www.thegamesjournal.com/articles/DefiningtheAbstract.shtml
http://gamestudies.org/0802/articles/sicart
http://gamestudies.org/0802/articles/sicart

REFERENCES

[113] Espen Årseth, Lev Manovich, Frans Mäyrä, Katie Salen,

and Mark J. P. Wolf. ”Define Real, Moron!” -

Some Remarks on Game Ontologies. In DI-

GAREC Keynote-Lectures 2009/10, 6, pages 50–68. Uni-

versitätsverlag Potsdam, 2011. 45

[114] H.H. Hoos and T. Stützle. Stochastic local search: Foun-

dations and applications. Morgan Kaufmann, 2005. 49

[115] F. Glover and M. Laguna. Tabu search, 1. Kluwer Aca-

demic Pub, 1998. 49

[116] N. Shaker, M. Nicolau, G. Yannakakis, J. Togelius, and

M. O’Neill. Evolving Levels for Super Mario Bros

Using Grammatical Evolution. In IEEE Transac-

tions on Computational Intelligence and Games (CIG),

2012. 51

[117] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A

mixed-initiative level design tool. In Proceedings of

the Fifth International Conference on the Foundations of

Digital Games, pages 209–216. ACM, 2010. 51

[118] J. Togelius, R. De Nardi, and S.M. Lucas. Towards au-

tomatic personalised content creation for racing

games. In Computational Intelligence and Games, 2007.

CIG 2007. IEEE Symposium on, pages 252–259. IEEE,

2007. 51

[119] L. Cardamone, G. Yannakakis, J. Togelius, and P. Lanzi.

Evolving interesting maps for a first person

shooter. In Proceedings of the 2011 international con-

ference on Applications of evolutionary computation, 1

of EvoApplications’11, pages 63–72. Springer, 2011. 51

[120] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wess-

ing, Johan Hagelbäck, and Georgios N. Yannakakis.

Multiobjective Exploration of the StarCraft Map

Space. In Proceedings of the IEEE Conference on Com-

putational Intelligence and Games (CIG), pages 265–

272, 2010. 51, 102, 105, 147

[121] D. Ashlock. Automatic generation of game ele-

ments via evolution. In Computational Intelligence

and Games (CIG), 2010 IEEE Symposium on, pages 289

–296, aug. 2010. 51

[122] M. Mateas and A. Stern. Façade: an experiment

in building a fully-realized interactive drama. In

Game Developers Conference (GDC ’03), San Jose, CA,

USA, March 2003. 52

[123] Y.G. Cheong and R. Young. Narrative generation

for suspense: Modeling and evaluation. In Ulrike

Spierling and Nicolas Szilas, editors, Interactive Story-

telling, 5334 of Lecture Notes in Computer Science,

pages 144–155. Springer, 2008. 52

[124] Richard J. Gerrig and Allan B.I. Bernardo. Read-

ers as problem-solvers in the experience

of suspense. Poetics, 22(6):459 – 472, 1994.

Available from: http://www.sciencedirect.com/science/

article/pii/0304422X94900213. 52

[125] J. Von Neumann and A.W. Burks. Theory of self-

reproducing automata. IEEE Transactions on Neural

Networks, 5(1):3–14, 1994. 52

[126] Wikipedia. Von Neumann neighborhood —

Wikipedia, The Free Encyclopedia, 2011.

[Online; accessed 25-July-2011]. Available from:

http://en.wikipedia.org/w/index.php?title=Von_Neumann_

neighborhood. 53

[127] Wikipedia. Moore neighborhood — Wikipedia,

The Free Encyclopedia, 2010. [Online; accessed 25-

July-2011]. Available from: http://en.wikipedia.org/w/

index.php?title=Moore_neighborhood&oldid=377394151. 53

[128] J.P. Rennard. Collision Based Computing, chapter Im-

plementation of logical functions in the game of life,

pages 419–512. Springer, 2002. 53

[129] L. Johnson, G.N. Yannakakis, and J. Togelius. Cellular

automata for real-time generation of infinite cave

levels. In Proceedings of the 2010 Workshop on Procedu-

ral Content Generation in Games, page 10. ACM, 2010.

53, 104

[130] Nathan Sorenson and Philippe Pasquier. Towards

a Generic Framework for Automated Video

Game Level Creation. In Cecilia Di Chio, Stefano

Cagnoni, Carlos Cotta, Marc Ebner, Anikó Ekárt, Anna

Esparcia-Alcazar, Chi-Keong Goh, Juan Merelo, Fer-

rante Neri, Mike Preuß, Julian Togelius, and Georgios

Yannakakis, editors, Applications of Evolutionary Com-

putation, 6024 of Lecture Notes in Computer Science,

pages 131–140. Springer Berlin / Heidelberg, 2010. 53

[131] A. Lindenmayer. Mathematical models for cellu-

lar interactions in development II. Simple and

branching filaments with two-sided inputs. Jour-

nal of theoretical biology, 18(3):300–315, 1968. 53

[132] P. Prusinkiewicz and A. Lindenmayer. The algorithmic

beauty of plants (The Virtual Laboratory). Springer,

1991. 53

[133] N. Chomsky. Three models for the description of

language. IRE Transactions on Information Theory,

2(3):113–124, 1956. 53

[134] J.E. Marvie, J. Perret, and K. Bouatouch. The FL-

system: a functional L-system for procedural ge-

ometric modeling. The Visual Computer, 21(5):329–

339, 2005. 54

[135] Glenn Martin, Sae Schatz, Clint Bowers, Charles E.

Hughes, Jennifer Fowlkes, and Denise Nicholson. Au-

tomatic Scenario Generation through Procedu-

ral Modeling for Scenario-Based Training. Pro-

ceedings of the Human Factors and Ergonomics Society

Annual Meeting, 53(26):1949–1953, 2009. 54

[136] M.A. Boden. The creative mind: myths and mechanisms.

Routledge, 2004. 54

[137] Graeme Ritchie. Some Empirical Criteria for At-

tributing Creativity to a Computer Program.

Minds and Machines, 17:67–99, 2007. 55

[138] Simon Colton. Creativity versus the perception of

creativity in computational systems. In In Proceed-

ings of the AAAI Spring Symp. on Creative Intelligent

Systems, 2008. 55

191

http://www.sciencedirect.com/science/article/pii/0304422X94900213
http://www.sciencedirect.com/science/article/pii/0304422X94900213
http://en.wikipedia.org/w/index.php?title=Von_Neumann_neighborhood
http://en.wikipedia.org/w/index.php?title=Von_Neumann_neighborhood
http://en.wikipedia.org/w/index.php?title=Moore_neighborhood&oldid=377394151
http://en.wikipedia.org/w/index.php?title=Moore_neighborhood&oldid=377394151

REFERENCES

[139] Simon Colton and Blanca Pérez Ferrer. No photos

harmed/growing paths from seed: an exhibition.

In Proceedings of the Symposium on Non-Photorealistic

Animation and Rendering, NPAR ’12, pages 1–10, Aire-

la-Ville, Switzerland, Switzerland, 2012. Eurographics

Association. 55

[140] Alan Turing. Digital Computers Applied to

Games. In Faster Than Thought (ed. B. V. Bowden),

pages 286–295, London, United Kingdom, 1953. Pit-

man Publishing. 56

[141] Alan Kotok and John McCarthy. A chess playing pro-

gram for the IBM 7090 computer. Master’s thesis, Mas-

sachusetts Institute of Technology. Dept. of Electrical

Engineering, 1962. 56

[142] Arthur Samuel. Some Studies in Machine Learn-

ing Using the Game of Checkers. IBM Journal,

3(3):210–229, 1959. 56

[143] Monroe Newborn. Kasparov vs. Deep Blue: Computer

Chess Comes of Age. Springer, 1997. 56

[144] Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot,

Jean-Baptiste Hoock, Arpad Rimmel, Olivier Teytaud,

Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong.

The Computational Intelligence of MoGo Re-

vealed in Taiwan’s Computer Go Tournaments.

IEEE Trans. Comput. Intellig. and AI in Games,

1(1):73–89, 2009. 57, 119

[145] J. von Neumann. Zur Theorie der

Gesellschaftsspiele. Mathematische Annalen,

100:295–320, 1928. 58

[146] GuillaumeM.J.-B. Chaslot, MarkH.M. Winands, and

H.Jaap Herik. Parallel Monte-Carlo Tree Search.

In H.Jaap Herik, Xinhe Xu, Zongmin Ma, and MarkH.M.

Winands, editors, Computers and Games, 5131 of Lec-

ture Notes in Computer Science, pages 60–71. Springer

Berlin Heidelberg, 2008. 60

[147] S. R. K. Branavan, David Silver, and Regina Barzilay.

Non-Linear Monte-Carlo Search in Civilization

II. In Proceedings of the International Joint Conference

on Artifical intelligence (IJCAI), 2011. 60

[148] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas,

P.I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,

S. Samothrakis, and S. Colton. A Survey of Monte

Carlo Tree Search Methods. Computational Intelli-

gence and AI in Games, IEEE Transactions on, 4(1):1–

43, March 2012. 60

[149] Levente Kocsis and Csaba Szepesvári. Bandit Based

Monte-Carlo Planning. In Johannes Fürnkranz, To-

bias Scheffer, and Myra Spiliopoulou, editors, Machine

Learning: ECML 2006, 4212 of Lecture Notes in Com-

puter Science, pages 282–293. Springer Berlin / Heidel-

berg, 2006. 61

[150] Guillaume Chaslot, Mark Winands, Jaap H. van den

Herik, Jos Uiterwijk, and Bruno Bouzy. Progressive

Strategies for Monte-Carlo Tree Search. In Joint

Conference on Information Sciences, Heuristic Search

and Computer Game Playing Session, Salt Lake City,

2007. 61

[151] Sylvain Gelly and David Silver. Combining online

and offline knowledge in UCT. In ICML ’07: Pro-

ceedings of the 24th international conference on Machine

learning, pages 273–280, New York, NY, USA, 2007.

ACM. 61

[152] Sylvain Gelly and David Silver. Monte-Carlo tree

search and rapid action value estimation in com-

puter Go. Artificial Intelligence, 175:1856–1875, July

2011. 61

[153] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.

Finite-time Analysis of the Multiarmed Bandit

Problem. Machine Learning, 47:235–256, 2002. 61

[154] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial In-

telligence through Simulated Evolution. John Wiley, New

York, USA, 1966. 62

[155] Simon Lucas. Evolving Finite State Transducers:

Some Initial Explorations. In Conor Ryan, Ter-

ence Soule, Maarten Keijzer, Edward Tsang, Riccardo

Poli, and Ernesto Costa, editors, Genetic Programming,

2610 of Lecture Notes in Computer Science, pages 241–

257. Springer Berlin / Heidelberg, 2003. 62

[156] Leo Breiman, Jerome H. Friedman, Richard A. Olshen,

and Charles J. Stone. Classification and regression trees.

Wadsworth International Group, Belmont CA, 1984. 63

[157] RG Dromey. Genetic software engineering-

simplifying design using requirements integra-

tion. In IEEE Working Conference on Complex and Dy-

namic Systems Architecture, pages 251–257, 2001. 63

[158] D. Isla. Managing complexity in the Halo 2 AI

system. In Proceedings of the Game Developers Confer-

ence, 2005. 63

[159] McHugh L. Argenton M. Dyckhoff M. Hecker, C. Three

Approaches to Halo-style Behavior Tree AI. In

Games Developer Conference, Audio Talk, 2007. 63

[160] Chong-U Lim, Robin Baumgarten, and Simon Colton.

Evolving Behaviour Trees for the Commer-

cial Game DEFCON. In Cecilia Chio, Stefano

Cagnoni, Carlos Cotta, Marc Ebner, Anikó Ekárt, An-

naI. Esparcia-Alcazar, Chi-Keong Goh, JuanJ. Merelo,

Ferrante Neri, Mike Preuß, Julian Togelius, and Geor-

giosN. Yannakakis, editors, Applications of Evolutionary

Computation, 6024 of Lecture Notes in Computer Sci-

ence, pages 100–110. Springer Berlin Heidelberg, 2010.

63

[161] WarrenS. McCulloch and Walter Pitts. A logical cal-

culus of the ideas immanent in nervous activ-

ity. The bulletin of mathematical biophysics, 5:115–133,

1943. 63

[162] T. Kohonen. Self-Organizing Maps. Springer Series in

Information Sciences. Springer, 2001. Available from:

http://books.google.dk/books?id=e4igHzyfO78C. 63

[163] P.J. Werbos. Backpropagation through time: what

it does and how to do it. Proceedings of the IEEE,

78(10):1550–1560, October 1990. 63

[164] J J Hopfield. Neural networks and physical sys-

tems with emergent collective computational

abilities. Proceedings of the National Academy of Sci-

ences, 79(8):2554–2558, 1982. Available from: http:

//www.pnas.org/content/79/8/2554.abstract. 63

192

http://books.google.dk/books?id=e4igHzyfO78C
http://www.pnas.org/content/79/8/2554.abstract
http://www.pnas.org/content/79/8/2554.abstract

REFERENCES

[165] Kenneth O. Stanley and Risto Miikkulainen. Evolving

Neural Networks through Augmenting Topolo-

gies. Evolutionary Computation, 10:99–127, 2002. 64,

112, 116

[166] J. K. Olesen, G. N. Yannakakis, and J. Hallam. Real-

time challenge balance in an RTS game using rt-

NEAT. In Proceedings of the IEEE Symposium on Com-

putational Intelligence and Games, pages 87–94, Perth,

December 2008. 64

[167] Jon Reed, Robert Toombs, and Nils Aall Barricelli.

Simulation of biological evolution and machine

learning: I. Selection of self-reproducing numeric

patterns by data processing machines, effects of

hereditary control, mutation type and crossing.

Journal of Theoretical Biology, 17(3):319 – 342, 1967.

64

[168] Nichael Lynn Cramer. A Representation for the

Adaptive Generation of Simple Sequential Pro-

grams. In Proceedings of the 1st International Confer-

ence on Genetic Algorithms, pages 183–187, Hillsdale,

NJ, USA, 1985. L. Erlbaum Associates Inc. 65

[169] J.R. Koza. On the programming of computers by means

of natural selection, 1. MIT press, 1996. 65

[170] Julian Miller and Peter Thomson. Cartesian Genetic

Programming. In Riccardo Poli, Wolfgang Banzhaf,

William Langdon, Julian Miller, Peter Nordin, and Ter-

ence Fogarty, editors, Genetic Programming, 1802

of Lecture Notes in Computer Science, pages 121–132.

Springer Berlin / Heidelberg, 2000. 65

[171] Michael Thielscher. The general game playing de-

scription language is universal. In Proceedings of the

Twenty-Second international joint conference on Artifi-

cial Intelligence - Volume Volume Two, IJCAI’11, pages

1107–1112. AAAI Press, 2011. 67

[172] Nathaniel Love, Timothy Hinrichs, David Haley, Eric

Schkufza, and Michael Genesereth. General Game

Playing: Game Description Language Specifica-

tion, 2008. Available from: http://games.stanford.edu/

language/spec/gdl_spec_2004_12.pdf. 68, 109

[173] Adam M. Smith, Mark J. Nelson, and Michael Mateas.

Adam M. Smith, Mark J. Nelson, and Michael

Mateas. In Proceedings of the Conference on Com-

putational Intelligence and Games (CIG), pages 91–98.

IEEE, August 2010. 68

[174] Adam Smith and Michael Mateas. Variations Forever:

Flexibly Generating Rulesets from a Sculptable

Design Space of Mini-Games. In Proceedings of

the Conference on Computational Intelligence and Games

(CIG), pages 273–280. IEEE, August 2010. 69

[175] Jeff Mallett and Mark Lefler. Zillions of Games,

1998. [Online; accessed 19-September-2011]. Available

from: http://www.zillions.de/. 69

[176] Cameron Browne. Yavalath, 2007. Available from:

http://www.cameronius.com/games/yavalath/. 70

[177] Michael Cook and Simon Colton. Multi-faceted evo-

lution of simple arcade games. In Proceedings of

the IEEE Conference on Computational Intelligence and

Games (CIG), pages 289–296, September 2011. 70

[178] Michael Cook, Simon Colton, and Jeremy Gow. Initial

results from co-operative co-evolution for auto-

mated platformer design. Applications of Evolution-

ary Computation, 7248:194–203, 2012. 70

[179] Ferdinand D. Saussure. Cours de linguistique générale.

Bayot, Paris, 1916. 73

[180] Christian Elverdam and Espen Aarseth. Game Clas-

sification and Game Design. Games and Culture,

2(1):3–22, January 2007. 74

[181] Robin Milner. Communicating and Mobile Systems: the

Pi-Calculus. Cambridge University Press, 1st edition,

June 1999. Available from: http://www.worldcat.org/

isbn/0521658691. 84

[182] Frank Herbert. Dune. New English Library, 1966. 102

[183] Tobias Mahlmann, Julian Togelius, and Georgios N. Yan-

nakakis. Spicing up map generation. In Proceedings

of the 2012 European conference on Applications of Evo-

lutionary Computation, EvoApplications’12, pages 224–

233, Berlin, Heidelberg, 2012. Springer-Verlag. 102

[184] Julian Togelius, Georgios N. Yannakakis, Kenneth O.

Stanley, and Cameron Browne. Search-based Proce-

dural Content Generation: a Taxonomy and Sur-

vey. IEEE Transactions on Computational Intelligence

and AI in Games, in print:172 – 186, 2011. 104, 133

[185] Jon Bentley. Programming pearls: algorithm

design techniques. Commun. ACM, 27:865–873,

September 1984. 104

[186] Jon L. Nielsen and Benjamin F. Jensen. Artificial Agents

for the Strategy Game Description Language. Master’s

thesis, IT University of Copenhagen, 2011. Available

from: http://game.itu.dk/sgdl. 109

[187] Stuart J. Russell and Peter Norvig. Artificial Intelli-

gence: A Modern Approach. Pearson Education, 2003.

111, 117

[188] Kenneth H. Rosen. Discrete Mathematics and Its Appli-

cations. McGraw-Hill Higher Education, 5th edition,

2002. 115

[189] Melanie Mitchell and Stephanie Forrest. Genetic al-

gorithms and artificial life. Artificial Intelligence,

1(3):267–289, 1994. 116

[190] John H. Holland. Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications to

Biology, Control, and Artificial Intelligence. The MIT

Press, April 1992. 116, 121

[191] Raúl Rojas. Neural Networks: A Systematic Introduc-

tion. Springer-Verlag, 1996. 116

[192] Johan Hagelbäck and Stefan J. Johansson. Using

multi-agent potential fields in real-time strategy

games. In Proceedings of the 7th international joint con-

ference on Autonomous agents and multiagent systems -

Volume 2, AAMAS ’08, pages 631–638, Richland, SC,

2008. International Foundation for Autonomous Agents

and Multiagent Systems. 120

193

http://games.stanford.edu/language/spec/gdl_spec_2004_12.pdf
http://games.stanford.edu/language/spec/gdl_spec_2004_12.pdf
http://www.zillions.de/
http://www.cameronius.com/games/yavalath/
http://www.worldcat.org/isbn/0521658691
http://www.worldcat.org/isbn/0521658691
http://game.itu.dk/sgdl

REFERENCES

[193] Johan Hagelbäck and Stefan J. Johansson. The Rise

of Potential Fields in Real Time Strategy Bots.

In Proceedings of the Fourth Artificial Intelligence and

Interactive Digital Entertainment Conference, pages 42–

47, 2008. 120

[194] S. W. Wilson. Generalization in the XCS Classifier

System. In Genetic Programming 1998: Proceedings of

the Third Annual Conference, pages 665–674, 1998. 121

[195] Simon M. Lucas and Julian Togelius. Point-to-Point

Car Racing: an Initial Study of Evolution Ver-

sus Temporal Difference Learning. In Proceedings

of the IEEE Symposium on Computational Intelligence

and Games, 2007. 131

[196] Ibrahim Osman and Gilbert Laporte. Metaheuris-

tics: A bibliography. Annals of Operations Research,

63:511–623, 1996. 133

[197] T. Mahlmann, J. Togelius, and G.N. Yannakakis. Evolv-

ing Card Sets Towards Balancing Dominion. In

IEEE World Congress on Computational Intelligence

(WCCI), 2012. 135

[198] Various. The Starcraft Wikia article about the

StarCraft II beta test, October 2010. Available from:

http://starcraft.wikia.com/wiki/StarCraft_II_beta. 136

[199] Sam Kass. Rock Paper Scissors Lizard Spock.

[Online; accessed 10-October-2012]. Available from:

http://www.samkass.com/theories/RPSSL.html. 137

[200] C. Salge, C. Lipski, T. Mahlmann, and B. Mathiak. Us-

ing genetically optimized artificial intelligence to

improve gameplaying fun for strategical games.

In Proceedings of the 2008 ACM SIGGRAPH symposium

on Video games, pages 7–14. ACM, 2008. 142

[201] C. Salge and T. Mahlmann. Relevant Information as

a Formalised Approach to Evaluate Game Me-

chanics. In Proceedings of the Conference on Computa-

tional Intelligence and Games (CIG), Copenhagen, DK,

August 2010. 142

[202] A. Cincotti and H. Iida. Outcome uncertainty and

interestedness in game-playing: A case study us-

ing synchronized hex. New Mathematics and Natural

Computation, 2:173–181, July 2006. 142

[203] Philip Bille. A survey on tree edit distance and

related problems. Theoretical Computer Science,

337(1–3):217 – 239, 2005. 148

[204] Tobias Mahlmann, Julian Togelius, and Georgios Yan-

nakakis. Towards Procedural Strategy Game Gen-

eration: Evolving Complementary Unit Types.

In Applications of Evolutionary Computation, pages 93–

102. Springer, 2011. 153, 172

[205] Tobias Mahlmann, Julian Togelius, and Georgios Yan-

nakakis. Modelling and evaluation of complex sce-

narios with the Strategy Game Description Lan-

guage. In Proceedings of the Conference on Computa-

tional Intelligence and Games (CIG), Seoul, KR, 2011.

156

[206] Héctor Pérez Mart́ınez, Maurizio Garbarino, and Geor-

gios Yannakakis. Generic Physiological Features

as Predictors of Player Experience. In Sidney

D’Mello, Arthur Graesser, Björn Schuller, and Jean-

Claude Martin, editors, Affective Computing and Intel-

ligent Interaction, 6974 of Lecture Notes in Computer

Science, pages 267–276. Springer Berlin / Heidelberg,

2011. 183

[207] Paolo Burelli and Georgios N. Yannakakis. Towards

Adaptive Virtual Camera Control In Computer

Games. In International symposium on Smart Graph-

ics, 2011. Available from: http://www.paoloburelli.com/

publications/burelli2011smartgraphics.pdf. 183

[208] Heather Desurvire, Martin Caplan, and Jozsef A. Toth.

Using heuristics to evaluate the playability of

games. In CHI ’04 extended abstracts on Human factors

in computing systems, CHI EA ’04, pages 1509–1512,

New York, NY, USA, 2004. ACM. 183

[209] Dongseong Choi and Jinwoo Kim. Why People Con-

tinue to Play Online Games: In Search of Crit-

ical Design Factors to Increase Customer Loy-

alty to Online Contents. CyberPsychology & Behav-

ior, 7(1):11–24, February 2004. 183

[210] M.A. Ahmad, B. Keegan, J. Srivastava, D. Williams, and

N. Contractor. Mining for Gold Farmers: Auto-

matic Detection of Deviant Players in MMOGs.

In Computational Science and Engineering, 2009. CSE

’09. International Conference on, 4, pages 340 –345,

aug. 2009. 183

[211] C. Thurau and C. Bauckhage. Analyzing the Evo-

lution of Social Groups in World of Warcraft.

In Computational Intelligence and Games (CIG), 2010

IEEE Symposium on, pages 170 –177, aug. 2010. 183

[212] B.G. Weber and M. Mateas. A data mining approach

to strategy prediction. In Computational Intelligence

and Games, 2009. CIG 2009. IEEE Symposium on, pages

140 –147, sept. 2009. 183

[213] T. Mahlmann, A. Drachen, A. Canossa, J. Togelius,

and G. N. Yannakakis. Predicting Player Behavior

in Tomb Raider: Underworld. In Proceedings of

the IEEE Conference on Computational Intelligence and

Games (CIG), pages 178–185, Copenhagen, DK, Au-

gust 2010. 183

194

http://starcraft.wikia.com/wiki/StarCraft_II_beta
http://www.samkass.com/theories/RPSSL.html
http://www.paoloburelli.com/publications/burelli2011smartgraphics.pdf
http://www.paoloburelli.com/publications/burelli2011smartgraphics.pdf

	List of Figures
	List of Tables
	Overview
	1 Introduction
	1.1 Computational Intelligence in Games
	1.2 Published papers

	2 Strategy Games
	2.1 The History of Strategy Games
	2.2 Strategy Games: The Delimitation of the Genre

	3 Related Theoretical Frameworks
	3.1 Modelling Player Experience: Qualitative Methods
	3.1.1 Self-reported data
	3.1.2 Requirements elicitation
	3.1.3 Personality
	3.1.4 Flow
	3.1.5 Emotional State
	3.1.6 Immersion

	3.2 Modelling Player Experience: Quantitative Methods
	3.2.1 Interest
	3.2.2 Physiological measures
	3.2.3 Tension in Board Games
	3.2.4 Measures from Combinatorial Games
	3.2.5 Learnability

	3.3 Defining Game Mechanics
	3.3.1 Different Layers of Rules
	3.3.2 Games as Systems

	3.4 Summary

	4 Related computational intelligence in games research
	4.1 Generating Content
	4.1.1 Search-based procedural content creation
	4.1.2 Procedural Level Generation
	4.1.3 Interactive Storytelling
	4.1.4 Cellular automata
	4.1.5 L-Systems

	4.2 Computational Creativity
	4.3 AI and Learning in Games
	4.3.1 Game Tree Search
	4.3.1.1 Min-Max Search
	4.3.1.2 Monte-Carlo Tree Search

	4.3.2 State machines
	4.3.3 Decision- and Behaviour Trees
	4.3.4 Neural Networks
	4.3.5 Genetic Algorithms
	4.3.6 Genetic Programming

	4.4 Modelling and Generating Game Mechanics
	4.4.1 Unified Modelling Language (UML)
	4.4.2 Stanford GDL
	4.4.3 Answer Set Programming
	4.4.4 Ludi
	4.4.5 ANGELINA
	4.4.6 Fixed length genome

	4.5 Summary

	5 The Strategy Games Description Language (SGDL)
	5.1 Design Paradigms
	5.2 Basic Concepts and Terms
	5.3 The SGDL Tree
	5.3.1 Attributes and Object References
	5.3.2 Conditions
	5.3.3 Consequences
	5.3.4 Actions
	5.3.5 Multiple Consequences
	5.3.6 Action as Consequences
	5.3.7 Object Lists and Object Filter
	5.3.8 Winning Conditions

	5.4 Surrounding framework
	5.4.1 Maps
	5.4.2 Game- and Player State

	5.5 Comparison to other Game Description Languages
	5.6 Summary

	6 SGDL in Practice
	6.1 Example Games
	6.1.1 Simple Rock Paper Scissors
	6.1.2 Complex Rock Paper Scissor
	6.1.3 Rock Wars
	6.1.4 Dune 2

	6.2 Interlude: ``Spicing up map generation''
	6.3 Summary

	7 Automated Gameplay
	7.1 The game, the agents and the assigner
	7.2 Agents
	7.2.1 Random action selection
	7.2.2 Finite-state machine
	7.2.3 Neuroevolution of augmenting topologies
	7.2.4 MinMax
	7.2.5 Monte Carlo Tree Search
	7.2.6 Potential fields
	7.2.7 Classifier systems

	7.3 Results of agent versus agent training
	7.4 Results of human play testing
	7.5 Conclusions

	8 Measuring Game Quality
	8.1 A Definition of Balance
	8.1.1 Complementary Unit Types
	8.1.2 Fitness function

	8.2 The Outcome Uncertainty of a Game
	8.3 Avoiding a Start-Finish victory
	8.4 Fitness functions for Action subtrees

	9 Searching the Strategy Game Space
	9.1 Balance and Complementary Unit Sets
	9.2 Comparing balance to outcome uncertainty
	9.2.1 Evolving actions
	9.2.2 The solution representation
	9.2.3 The Evolutionary Algorithm

	10 Overall Results
	10.1 Further experiments
	10.2 Game in focus: a qualitative analysis
	10.3 Summary

	11 Beyond tactics: Conclusions and Discussion
	11.1 Modelled Games
	11.2 New Game Mechanics
	11.3 The Strategy Games Description Language
	11.3.1 Verbosity vs. Versatility

	11.4 The SGDL Framework
	11.5 Computational Complexity
	11.5.1 Status of the General Gameplaying Agents

	11.6 Human studies
	11.7 Data Driven Evolution
	11.8 Lessons learned
	11.9 Concluding Remarks

	References

